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Chern currents of coherent sheaves

Richard Lärkäng and Elizabeth Wulcan

Abstract. Given a finite locally free resolution of a coherent analytic sheaf F , equipped with
Hermitian metrics and connections, we construct an explicit current, obtained as the limit of
certain smooth Chern forms of F , that represents the Chern class of F and has support on the
support of F . If the connections are (1,0)-connections and F has pure dimension, then the first
nontrivial component of this Chern current coincides with (a constant times) the fundamental cycle
of F . The proof of this goes through a generalized Poincaré–Lelong formula, previously obtained
by the authors, and a result that relates the Chern current to the residue current associated with
the locally free resolution.
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1. Introduction

Let X be a complex manifold and let F be a coherent analytic sheaf on X of positive codimension, i.e.
such that the support suppF has positive codimension. Assume that F has a locally free resolution of the
form

(1.1) 0→O(EN )
ϕN−−−→ ·· ·

ϕ1−−→O(E0)→F → 0,

where Ek are holomorphic vector bundles on X, and O(Ek) denote the corresponding locally free sheaves.
Then the (total) Chern class of F equals

(1.2) c(F ) =
N∏
k=0

c(Ek)
(−1)k ,

where c(Ek) is the (total) Chern class of Ek , see Section 3.1. In this paper we construct explicit representatives
of the nontrivial part of c(F ) with support on suppF .

Let us briefly describe our construction; the representatives of c(F ) will be currents obtained as limits of
certain Chern forms. Assume that (E,ϕ) is a locally free resolution of F of the form (1.1). Moreover assume
that each vector bundle Ek is equipped with a Hermitian metric and a connection Dk (that is not necessarily
the Chern connection of the metric). Let σk be the minimal inverse of ϕk , see Section 2.3, let χ :R≥0→R≥0
be a smooth cut-off function such that χ(t) ≡ 0 for t � 1 and χ(t) ≡ 1 for t � 1, let s be a (generically
non-vanishing) holomorphic section of a vector bundle such that {s = 0} ⊇ suppF , let χε = χ(|s|2/ε), and
let D̂εk be the connection

(1.3) D̂εk = −χεσkDϕk +Dk ;

here D is a connection on EndE, where E =
⊕

Ek , induced by the Dk , see Section 2.2. Then clearly the
Chern form

(1.4) c(E,D̂ε) :=
N∏
k=0

c(Ek , D̂
ε
k )

(−1)k
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is a representative for c(F ). Throughout this paper we consider Chern classes as de Rham cohomology
classes of smooth forms or currents. Our first main result asserts that the limit of this form is a current with
the desired properties.

Theorem 1.1. Assume that F is a coherent analytic sheaf of positive codimension that admits a locally free
resolution of the form (1.1). Moreover, assume that each Ek is equipped with a Hermitian metric and a connection
Dk . Let c(E,D̂ε) be the Chern form of F defined by (1.4), and let c`(E,D̂ε) denote the component of degree 2`. Let
`1, . . . , `m ∈N>0. Then

(1.5) cRes`1
(E,D)∧ · · · ∧ cRes`m

(E,D) := lim
ε→0

c`1(E,D̂
ε)∧ · · · ∧ c`m(E,D̂

ε)

is a well-defined closed current, independent of χε, that represents c`1(F )∧ · · · ∧ c`m(F ) and has support on
suppF .

The Chern currents (1.5) are pseudomeromorphic in the sense of [AW10], see Theorem 5.1, which means
that they have a geometric nature similar to closed positive (or normal) currents, see Section 2.1. We let

cRes(E,D) = 1+ cRes1 (E,D) + cRes2 (E,D) + · · · .

The first nontrivial component of cRes(E,D) is (the current of integration along) a cycle, see Theorem 1.4
below. We do not know whether Chern currents of higher degree are of order 0 in general.

Remark 1.2. If all the connections Dk are (1,0)-connections, i.e. the (0,1)-part of each Dk equals ∂̄, then so
are the connections D̂εk . However, even if the Dk are Chern connections, the D̂εk are not Chern connections
in general. Thus, it might be the case that the involved forms and currents in (1.5) contain terms of bidegree
(` +m,` −m) with m > 0 (but only when ` > codimF by Theorem 1.4 below).

Our construction of Chern currents is inspired by the paper [BB72] by Baum and Bott, where singular
holomorphic foliations are studied by expressing characteristic classes associated to a foliation as certain
cohomological residues, more precisely as push-forwards of cohomology classes living in the singular set of
the foliation. A key point in the proofs in [BB72] are the concepts of connections compatible with and fitted
to a complex of vector bundles. One may check that their constructions of fitted connections (with some
minor adaptations) correspond to connections of the form (1.3). For the results in [BB72], it was sufficient
to consider Chern forms associated to connections (1.3) for ε small enough, but fixed, while in the present
paper, we study the limit of such forms when ε→ 0.

Example 1.3. Let us compute cRes(E,D) when F is the structure sheaf OZ of a divisor Z ⊂ X, defined by a
holomorphic section s of a holomorphic line bundle L over X, and (E,ϕ) is the locally free resolution

(1.6) 0→O(L∗) s→O→OZ → 0.

Assume that L is equipped with a connection DL; equip E1 = L∗ with the induced dual connection DL∗ , and
E0 with the trivial connection. The minimal inverse of s is 1/s and Ds =DLs, so D̂

ε
1 = χε(DLs/s) +DL∗ , and

D̂ε0 is the trivial connection. The curvature form of D̂ε1 equals Θ̂ε
1 = dχε ∧ (DLs/s)− (1−χε)ΘL, where ΘL

is the curvature form of DL (which equals minus the curvature form of DL∗ ). By an appropriate formulation
of the Poincaré-Lelong formula,

(1.7) lim
ε→0

dχε ∧
DLs
s

= 2πi[Z],

where [Z] is the current of integration along (the cycle of) Z . Note that

c(E,D̂ε) = c(E1, D̂
ε
1 )
−1 = 1− c1(E1, D̂ε1 ) + c1(E1, D̂

ε
1 )

2 − · · · .

Thus, since ΘL is smooth,

(1.8) cRes1 (E,D) = lim
ε→0
−c1(E1, D̂ε1 ) = − limε→0

i
2π

Θ̂ε
1 = [Z].
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Thus, the first Chern current coincides with [Z], which can be seen as a canonical representative of c1(OZ )
with support on suppOZ .

By further calculations of terms of all degrees, one can show that

cRes(E,D) = 1+ [Z](1 + c1(L,D) + · · ·+ cn−11 (L,D)).

Our next result is an explicit description of the first nontrivial Chern current cResp (E,D) in the case when
F has pure codimension p, i.e. suppF has pure dimension dimX −p, that generalizes (1.8). Recall that the
(fundamental) cycle of F is the cycle

(1.9) [F ] =
∑
i

mi[Zi]

(considered as a current of integration), where Zi are the irreducible components of suppF , and mi is the
geometric multiplicity of Zi in F , see e.g. [Ful98, Chapter 1.5].

Theorem 1.4. Assume that F is a coherent analytic sheaf of pure codimension p > 0 that admits a locally free
resolution (E,ϕ) of the form (1.1). Moreover, assume that each Ek is equipped with a Hermitian metric and a
(1,0)-connection Dk . Then

cResp (E,D) = (−1)p−1(p − 1)![F ].

Moreover

(1.10) cRes` (E,D) = 0 for 0 < ` < p

and

(1.11) cRes`1
(E,D)∧ · · · ∧ cRes`m

(E,D) = 0 for m ≥ 2 and 0 < `1 + · · ·+ `m ≤ p.

Here the Chern currents on the left hand sides are defined by (1.5).

In case F has codimension p, but not necessarily pure codimension p, then Theorem 1.4 still holds if we
replace the first equation by

(1.12) cResp (E,D) = (−1)p−1(p − 1)![F ]p,

where [F ]p denotes the part of [F ] of codimension p, i.e. in (1.9), one only sums over the components Zi of
codimension p.

In particular, cResp (E,D) is independent of the choice of Hermitian metrics and (1,0)-connections on
(E,ϕ). Moreover, it follows that on cohomology level

(1.13) cp(F ) = (−1)p−1(p − 1)![F ],

where now the right hand side should be interpreted as a de Rham class. When F is the pushforward of a
vector bundle from a subvariety, that (1.13) holds is a well-known consequence of the Grothendieck-Riemann-
Roch theorem, cf. [Ful98, Examples 15.2.16 and 15.1.2].

The proof of Theorem 1.4 relies on a generalization of the Poincaré-Lelong formula. Given a complex
(1.1) equipped with Hermitian metrics, Andersson and the second author defined in [AW07] an associated
so-called residue current RE = R =

∑
Rk with support on suppF , where Rk is a Hom(E0,Ek)-valued

(0, k)-current for k = 0, . . . ,N , see Section 2.3. The construction involves the minimal inverses σk of ϕk .
If (E,ϕ) is the complex (1.6), then RE coincides with the residue current ∂̄(1/s) = limε→0 ∂̄χε(1/s); more
generally if (E,ϕ) is the Koszul complex of a complete intersection, then RE coincides with the classical
Coleff-Herrera residue current, [CH78]. Using residue currents, we can write the Poincaré-Lelong formula
(1.7) as

∂̄
1
s
∧DLs = 2πi[Z];
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indeed, the left hand side in (1.7) equals lim ∂̄χε ∧ (DLs)/s. Given a Hom(E`,E`)-valued current α, let
trα denote the trace of α. In [LW18, LW21] we proved the following generalization of the Poincaré-Lelong
formula:
Assume that RE is the residue current associated with a finite locally free resolution (E,ϕ) of a coherent analytic
sheaf F of pure codimension p. Moreover assume that D is a connection on EndE induced by arbitrary (1,0)-
connections on Ek . Then

(1.14)
1

(2πi)pp!
tr(Dϕ1 · · ·DϕpRp) = [F ].

If F has codimension p, but not necessarily pure codimenion, (1.14) still holds if we replace [F ] by [F ]p, cf.
[LW18, Theorem 1.5]. In view of this, Theorem 1.4, as well as (1.12), are direct consequences of the following
explicit description of (the components of low degree of) cRes(E,D) in terms of RE .

Theorem 1.5. Assume that F is a coherent analytic sheaf of codimension p > 0 that admits a locally free
resolution (E,ϕ) of the form (1.1). Moreover, assume that each Ek is equipped with a Hermitian metric and a
(1,0)-connection Dk . Let R be the associated residue current and D the connection on EndE induced by the Dk .
Then

cResp (E,D) =
(−1)p−1

(2πi)pp
tr(Dϕ1 · · ·DϕpRp).

Moreover (1.10) and (1.11) hold.

In fact, we formulate and prove our results in a slightly more general setting. We consider the Chern class
c(E) of a generically exact complex of vector bundles (E,ϕ) that is not necessarily a locally free resolution
of a coherent sheaf. Theorem 5.1 below asserts that c(E,D̂ε) as well as products of such currents have
well-defined limits when ε→ 0 and represent the corresponding (products of) Chern classes. In particular,
Theorem 1.1 follows. In Theorem 6.1, if (E,ϕ) is exact outside a variety of codimension p, we give an explicit
description of cResp (E,D) := limε→0 cp(E,D̂ε) terms of residue currents that generalizes Theorem 1.5. From
this and a more general version of the Poincaré-Lelong formula (1.14) it follows that if the cohomology
groups are of pure codimension p, then cResp (E,D) = (−1)p−1(p − 1)![E], where [E] is the cycle of (E,ϕ), see
Corollary 6.7 and (2.19).

Our results could alternatively be formulated in term of the Chern character ch(E) of E. From Theorem 1.1,
for ` > 0, we obtain a current chRes` (E,D) that represents the `th graded piece ch`(E) of the Chern character,
see Section 6. Theorems 1.4 and 1.5 are then equivalent to

chResp (E,D) =
1

(2πi)pp!
tr(Dϕ1 · · ·DϕpRp) = [F ],

chRes` (E,D) = 0 for ` < p, and

chRes`1
(E,D)∧ · · · ∧ chRes`m

(E,D) = 0 for m ≥ 2 and `1 + · · ·+ `m ≤ p,

see Theorem 6.2 and Remark 6.3.

We refer to the currents in Theorem 1.1 as Chern currents, in analogy with the usual Chern forms
representing Chern classes. In works of Bismut, Gillet, and Soulé [BGS90a, BGS90b] appears the similarly
named concept of Bott-Chern currents, that are certain explicit ddc-potentials in a transgresssion formula in
a Grothendieck-Riemann-Roch theorem, and not directly related to our currents.

There are some similarities between our results and results by Harvey and Lawson. In [HL93] they study
characteristic classes of morphisms ϕ : E0→ E1 of vector bundles, and only in very special situations there
is overlap between their results and ours. We remark that the connection (1.3) that plays a crucial role in our
work essentially appears and is important in [HL93], see, in particular, [HL93, Section I.4].

Chern classes of coherent sheaves, without the assumption of the existence of a global locally free
resolution, were studied in the thesis of Green, [Gre80], as well as in various recent papers, including
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[Gri10, Hos20a, Hos20b, Qia16, BSW21, Wu20]. Several of these papers also concern classes in finer
cohomology theories than de Rham cohomology, as for example (rational or complex) Bott-Chern or Deligne
cohomology.

In the present paper, our focus has been to find explicit representatives of Chern classes of a coherent
sheaf with support on the support of the sheaf, a type of result which as far as we can tell, none of the above
mentioned works seems to consider. By incorporating the construction of residue currents associated with a
twisted resolution from [JL21], it might be possible to extend our results to arbitrary coherent sheaves, without
any assumptions about the existence of a global locally free resolution. We plan to explore this in future work.
The currents we study provide representatives of the Chern classes in de Rham cohomology. Our methods
unfortunately do not seem to yield representatives in the finer cohomology theories mentioned above, since
for example Chern classes in complex Bott-Chern cohomology as in [Qia16, BSW21], are naturally obtained
from Chern forms of the Chern connection of a hermitian metric, while our construction, building on the
techniques in [BB72], involve Chern forms of connections that are not Chern connections of a hermitian
metric.

The paper is organized as follows. In Section 2 we give some necessary background on (residue) currents.
In Section 3 we describe Chern forms and Chern characters, and in Section 4 we discuss compatible
connections. The proofs of (the generalized versions of) Theorems 1.1 and 1.5 occupy Sections 5 and 6,
respectively. Finally in Section 7 we compute cRes(E,D) for an explicit choice of a locally free resolution
(E,ϕ) of a coherent sheaf F . In particular, we compute cRes` (E,D) for ` > codimF in this case.

Acknowledgements

This paper is very much inspired by an ongoing joint project with Lucas Kaufmann, which aims to
understand Baum-Bott residues in terms of (residue) currents. We are greatly indebted to him for many
valuable discussions on this topic. We would also like to thank Dennis Eriksson for many important
discussions and helpful comments on a previous version of this paper.

2. Currents associated with complexes of vector bundles

We say that a function χ :R≥0→R≥0 is a smooth approximand of the characteristic function χ[1,∞) of the
interval [1,∞) and write

χ ∼ χ[1,∞)

if χ is smooth and χ(t) ≡ 0 for t � 1 and χ(t) ≡ 1 for t � 1. Note that if χ ∼ χ[1,∞) and χ̂ = χ` , then
χ̂ ∼ χ[1,∞) and

(2.1) dχ̂ = `χ`−1dχ.

2.1. Pseudomeromorphic currents

Let f be a (generically nonvanishing) holomorphic function on a (connected) complex manifold X. Herrera
and Lieberman [HL71], proved that the principal value

lim
ε→0

∫
|f |2>ε

ξ
f

exists for test forms ξ and defines a current [1/f ]. It follows that ∂̄[1/f ] is a current with support on
the zero set Z(f ) of f ; such a current is called a residue current. Assume that χ ∼ χ[1,∞) and that F is a
(generically nonvanishing) section of a Hermitian vector bundle such that Z(f ) ⊆ {F = 0}. Then

(2.2) [1/f ] = lim
ε→0

χ(|F|2/ε)
f

and ∂̄[1/f ] = lim
ε→0

∂̄χ(|F|2/ε)
f

,
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see e.g. [AW18]. In particular, the limits are independent of χ and F.
In the literature there are various generalizations of residue currents and principal value currents. In

particular, Coleff and Herrera [CH78] introduced products like

(2.3) [1/f1] · · · [1/fr ]∂̄[1/fr+1]∧ · · · ∧ ∂̄[1/fm].

In order to obtain a coherent approach to questions about residue and principal value currents was introduced
in [AW10] the sheaf PMX of pseudomeromorphic currents on X, consisting of direct images under holomorphic
mappings of products of test forms and currents like (2.3). See e.g. [AW18, Section 2.1] for a precise definition;
in particular it follows from the definition that PM is closed under push-forwards of modifications. Also, we
refer to [AW18] for the results mentioned in this subsection. The sheaf PMX is closed under ∂̄ and under
multiplication by smooth forms. Pseudomeromorphic currents have a geometric nature, similar to closed
positive (or normal) currents. For example, the dimension principle states that if the pseudomeromorphic
current µ has bidegree (∗,p) and support on a variety of codimension strictly larger than p, then µ vanishes.

The sheaf PMX admits natural restrictions to constructible subsets. In particular, if W is a subvariety of
the open subset U ⊆ X, and F is a section of a vector bundle such that {F = 0} =W , then the restriction to
U \W of a pseudomeromorphic current µ on U is the pseudomeromorphic current

1U\Wµ := lim
ε→0

χ(|F|2/ε)µ|U ,

where χ ∼ χ[1,∞) as above. This definition is independent of the choice of F and χ.
A pseudomeromorphic current µ on X is said to have the standard extension property (SEP) if 1U\Wµ = µ|U

for any subvariety W ⊆ U of positive codimension, where U ⊆ X is any open subset. By definition, it follows
that if µ has the SEP and F . 0 is any holomorphic section of a vector bundle, then

(2.4) lim
ε→0

χ(|F|2/ε)µ = µ.

2.2. Superstructure and connections on a complex of vector bundles

Let (E,ϕ) be a complex

(2.5) 0 −→ EN
ϕN−−−→ EN−1

ϕN−1−−−−→ ·· ·
ϕ2−−→ E1

ϕ1−−→ E0 −→ 0,

of vector bundles over X. As in [AW07], see also [LW18], we will consider the complex (E,ϕ) to be equipped
with a so-called superstructure, i.e. a Z2-grading, which splits E := ⊕Ek into odd and even parts E+ and
E−, where E+ = ⊕E2k and E− = ⊕E2k+1. Also EndE gets a superstructure by letting the even part be the
endomorphisms preserving the degree, and the odd part the endomorphisms switching degrees.

This superstructure affects how form- and current-valued endomorphisms act. Assume that α =ω⊗γ is a
section of E•(EndE), where γ is a holomorphic section of Hom(E`,Ek), and ω is a smooth form of degree
m. Then we let degf α =m and degeα = k − ` denote the form and endomorphism degrees, respectively, of
α. The total degree is degα = degf α +degeα. If β is a form-valued section of E, i.e. β = η ⊗ξ , where η is
a scalar form, and ξ is a section of E, both homogeneous in degree, then the action of α on β is defined by

(2.6) α(β) := (−1)(degeα)(degf β)ω∧ η ⊗γ(ξ).

If furthermore, α′ = ω′ ⊗γ ′ , where γ ′ is a holomorphic section of EndE, and ω′ is a smooth form, both
homogeneous in degree, then we define

αα′ := (−1)(degeα)(degf α
′)ω∧ω′ ⊗γ ◦γ ′ .

For an (m×n)-matrix A and an (n×m)-matrix B, we have that tr(AB) = tr(BA), while for the morphisms α
and α′ above, we get such an equality with a sign due to the superstructure,

(2.7) tr(αα′) = (−1)(degα)(degα
′)−(degeα)(degeα′) tr(α′α),

see [LW18, Equation (2.14)].
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Note that ∂̄ extends in a way that respects the superstructure to act on EndE-valued morphisms. In
particular,

(2.8) ∂̄(αα′) = ∂̄αα′ + (−1)degαα∂̄α′ .

We will consider the situation when (E,ϕ) is equipped with a connection D =DE = (D0, . . . ,DN ), where
Dk is a connection on Ek . Then there is an induced connection ⊕Dk on E, that we also denote by DE . This
in turn induces a connection DEnd on EndE that takes the superstructure into account, defined by

(2.9) DEndα :=DE ◦α − (−1)degαα ◦DE ,

if α is a EndE-valued form. It satisfies the following Leibniz rule, [LW18, Equation (2.4)], cf. (2.8)

(2.10) DEnd(αα
′) =DEndαα

′ + (−1)degααDEndα
′ .

To simplify notation, we will sometimes drop the subscript End and simply denote this connection by D . If
Θk denotes the curvature form of Dk , and α : Ek→ E` , then, by (2.9),

(2.11) DDα =Θ`α + (−1)degα+degα+1αΘk =Θ`α −αΘk .

The above formulas hold also when α and α′ are current-valued instead of form-valued, as long as the
involved products of currents are well-defined.

We let D ′k and D ′′k denote the (1,0)- and (0,1)-parts of Dk , respectively, and we let D ′ = (D ′k) and
D ′′ = (D ′′k ) denote the corresponding (1,0)- and (0,1)-parts of DE = (Dk). We say that DE is a (1,0)-
connection if each Dk is a (1,0)-connection, i.e. D ′′k = ∂̄. We will use the following consequence of (2.11):
assume that DE is a (1,0)-connection, and α : Ek → E` is a holomorphic (or more generally a ∂̄-closed
form-valued) morphism. Then

(2.12) ∂̄Dα = (Θ`)(1,1)α −α(Θk)(1,1),

where (·)(1,1) denotes the component of bidegree (1,1).
Since (E,ϕ) is a complex and ϕk has odd degree, it follows from (2.10) that

(2.13) ϕk−1Dϕk =Dϕk−1ϕk .

2.3. Residue currents associated to a complex

Let us briefly recall the construction in [AW07]. Assume that we have a generically exact complex (E,ϕ) of
vector bundles over a complex manifold X of the form (2.5), and assume that each Ek is equipped with some
Hermitian metric. If Zk is the analytic set where ϕk has lower rank than its generic rank, then outside of
Zk the minimal (or Moore-Penrose) inverse σk : Ek−1→ Ek of ϕk is determined by the following properties:
ϕkσkϕk = ϕk , imσk ⊥ imϕk+1, and σk+1σk = 0. One can verify that σk is smooth outside of Zk . Since
σkσk−1 = 0 and σk has odd degree, by (2.8),

(2.14) σk∂̄σk−1 = ∂̄σkσk−1.

Let Z be the set where (E,ϕ) is not pointwise exact. It follows from the definition of σk that

(2.15) ϕkσk + σk−1ϕk−1 = IdEk−1

outside Z, or more generally outside Zk ∪Zk−1. Applying (2.8) to (2.15), we obtain that outside Z

(2.16) ϕk∂̄σk = ∂̄σk−1ϕk−1

and furthermore applying (2.10) to this equality, we get that

(2.17) Dϕk∂̄σk =D∂̄σk−1ϕk−1 + ∂̄σk−1Dϕk−1 +ϕkD∂̄σk .
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Lemma 2.1. Let X, (E,ϕ), Z, and σk be as above. Assume that for each j = 1, . . . ,m, sj is an entry of σk , ∂σk ,
or ∂̄σk for some k in some local trivialization, and let s = s1 · · ·sm. Assume that χ ∼ χ[1,∞) and that F is a
(generically nonvanishing) holomorphic section of a vector bundle over X such that Z ⊂ {F = 0}. Then the limits

lim
ε→0

χ(|F|2/ε)s and lim
ε→0

∂̄χ(|F|2/ε)∧ s

exist and define pseudomeromorphic currents on X that are independent of the choices of χ and F; the support of
the second current is contained in Z . Furthermore,

lim
ε→0

∂χ(|F|2/ε)∧ s = 0.

Proof. By Hironaka’s theorem there is a holomorphic modification π : X̃→ X, such that for each k, π∗σk
is locally of the form (1/γk)σ̃k , where γk is holomorphic with Z(γk) ⊂ Z̃ := π−1Z, and σ̃k is smooth, see
[AW07, Section 2]. Now, where χ(|π∗F|2/ε) . 0, ∂̄π∗σk = (1/γk)∂̄σ̃k and ∂π∗σk = ∂(1/γk)σ̃k + (1/γk)∂σ̃k .
Since each holomorphic derivative ∂/∂zi(1/γk) is a meromorphic function with poles contained in Z̃ it
follows that π∗sj equals (a sum of terms of the form) (1/gj )s̃j , where gj is holomorphic with Z(gj ) ⊂ Z̃, and
s̃j is smooth. Thus π∗s equals (a sum of terms of the form) (1/g)s̃, where g is holomorphic with Z(g) ⊂ Z̃,
and s̃ is smooth. In view of (2.2),

lim
ε→0

χ(|π∗F|2/ε)π∗s and lim
ε→0

∂̄χ(|π∗F|2/ε)∧π∗s

are well-defined pseudomeromorphic currents on X̃ independent of χ and F; the second current has support
on Z̃ . Since PM is closed under push-forwards of modifications, cf. Section 2.1, this proves the first part of
the lemma.

As proved above, the limit

µ := lim
ε→0

χ(|F|2/ε)s

exists. This current is in fact a so-called almost semi-meromorphic current, cf. [AW18, Section 4], and in
particular, it has the SEP. By [AW18, Theorem 3.7], ∂µ also has the SEP. Thus,

lim
ε→0

∂χ(|F|2/ε)∧µ = lim
ε→0

∂(χ(|F|2/ε)∧µ)− lim
ε→0

χ(|F|2/ε)∂µ = ∂µ−∂µ = 0,

which proves the last part of the lemma. Here, in the second equality, we have used that the two limits exist
and are both equal to ∂µ by (2.4). �

In particular

(2.18) R`k := lim
ε→0

∂̄χ(|F|2/ε)∧ σk∂̄σk−1 · · · ∂̄σ`+1

is a Hom(E`,Ek)-valued pseudomeromorphic current of bidegree (0, k − `) with support on Z; in fact, it
follows from the proof that the support is contained in Z`+1 ∪ · · · ∪Zk . If ` = k − 1, then the right hand side
of (2.18) should be interpreted as limε→0 ∂̄χ(|F|2/ε)∧ σk . The residue current RE = R :=

∑
R`k associated

with (E,ϕ) was introduced in [AW07], cf. the introduction. Assume that (E,ϕ) is a locally free resolution of
a coherent analytic sheaf F . Then R`k vanishes for ` > 0 by [AW07, Theorem 3.1]. In this case R =

∑
Rk ,

where Rk = R
0
k .

Given a complex (E,ϕ) of vector bundles of the form (2.5), following [LW21], we define the cycle

(2.19) [E] =
N∑
k=0

(−1)k[Hk(E)],

where Hk is the homology sheaf of (E,ϕ) at level k. Note that if (E,ϕ) is a locally free resolution of a
coherent analytic sheaf F , then [E] = [F ]. In [LW21] we prove the following generalization of (1.14).
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Theorem 2.2. Let (E,ϕ) be a complex of Hermitian vector bundles of the form (2.5) such that Hk(E) has pure
codimension p > 0 or vanishes, for k = 0, . . . ,N , and let D be an arbitrary (1,0)-connection on (E,ϕ). Then,

1
(2πi)pp!

N−p∑
k=0

(−1)k tr(Dϕk+1 · · ·Dϕk+pRkk+p) = [E].

3. Chern forms and Chern characters

3.1. Chern classes and forms

Assume that E is a holomorphic vector bundle of rank r equipped with a connection D . Then recall that
the (total) Chern form c(E,D) = 1+ c1(E,D) + · · ·+ cr(E,D) is defined by

r∑
`=0

c`(E,D)t` = det
(
I +

i
2π

Θt
)
,

where Θ is the curvature matrix of D in a local trivialization; in particular, c`(E,D) is a form of degree 2`.
The de Rham cohomology class of c(E,D) is the (total) Chern class c(E) =

∑
c`(E) of the vector bundle E.

If (E,ϕ) is a complex of vector bundles of the form (2.5) that is not necessarily a locally free resolution
of a coherent analytic sheaf, in line with the Chern theory of virtual bundles as in e.g. [BB72, Section 4] or
[Suw98, Section II.8.C], we let

c(E) =
N∏
k=0

c(Ek)
(−1)k .

Moreover, if (E,ϕ) is equipped with a connection D = (Dk), cf. Section 2.2, we let

(3.1) c(E,D) =
N∏
k=0

c(Ek ,Dk)
(−1)k

and we let c`(E,D) = c(E,D)` be the component of degree 2`.
Consider now a coherent analytic sheaf F with a locally free resolution (1.1). We define the Chern class

of F by (1.2), i.e. c(F ) = c(E), and if (E,ϕ) is equipped with a connection D, then this class may be
represented by (3.1). This definition of Chern classes of coherent sheaves may be motivated in terms of
K-theory. However, it is typically considered only on manifolds with the so-called resolution property. Recall
that a complex manifold X is said to have the resolution property if any coherent analytic sheaf F on X has
a finite locally free resolution (1.1). For such manifolds, the definition (1.2) is the unique extension of the
definition of Chern classes from locally free sheaves to coherent analytic sheaves that satisfies the following
Whitney formula: if 0→F ′→F →F ′′→ 0 is a short exact sequence of sheaves, then c(F ) = c(F ′′)c(F ′′),
cf. [BS58, Théorème 2] or [EH16, Chapter 14.2].

In this paper, we define Chern classes of coherent sheaves by (1.2) also on manifolds which do not have
the resolution property, but then necessarily only for coherent sheaves with a locally free resolution (1.1).
Note that if we are on a manifold for which the resolution property does not hold, it is not immediate that
the de Rham cohomology class of (1.2) is well-defined, i.e. independent of the resolution. However, that it is
well-defined follows from a construction of Chern classes of arbitrary coherent analytic sheaves on arbitrary
complex manifolds by Green, [Gre80], see also [TT86], since in case one has a global locally free resolution
of finite length, the definition in [Gre80] coincides with the one in (1.2).
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3.2. The Chern character (form) of a vector bundle

Assume that E is a holomorphic vector bundle of rank r . Then formally we can write

1+ c1(E)t + · · ·+ cr(E)tr =
r∏
i=1

(1 +αit),

where αi are the so-called Chern roots of E, see e.g. [Ful98, Remark 3.2.3]. In particular, this means that
c`(E) = e`(α1, . . . ,αr ), where e` is the `th elementary symmetric polynomial

e`(x) = e`(x1, . . . ,xr ) =
∑

1≤i1<···<i`≤r
xi1 · · ·xi` .

The Chern character of E may formally be defined as the symmetric polynomial ch(E) =
∑r
i=1 e

αi in the
Chern roots, see e.g. [Ful98, Example 3.2.3]. In particular, the `th graded piece is

(3.2) ch`(E) =
1
`!
p`(α1, . . . ,αr ),

where p` is the `
th power sum polynomial

p`(x) = p`(x1, . . . ,xr ) =
r∑
i=1

x`i .

Since any symmetric polynomial in xi may be expressed as a unique polynomial in ej(x), there are polynomi-
als Q`(t1, . . . , t`), ` ≥ 1, such that p`(x) =Q`(e1(x), . . . , e`(x)); these are sometimes called Hirzebruch–Newton
polynomials. If tj is given weight j, then Q`(t1, . . . , t`) is a weighted homogenous polynomial of degree `.
Written out explicitly, Definition (3.2) should be read as

ch`(E) =
1
`!
Q`

(
c1(E), . . . , c`(E)

)
.

If E is equipped with a connection D, one can analogously define Chern character forms

(3.3) ch`(E,D) =
1
`!
Q`

(
c1(E,D), . . . , c`(E,D)

)
and ch(E,D) =

∑
ch`(E,D) representing the Chern character. If Θ is the curvature corresponding to D (in

a local trivialization), then

(3.4) ch`(E,D) =
1
`!
tr

( i
2π

Θ

)`
,

cf. e.g. [Tu17, §B.4-6].
The polynomials Q` may be computed recursively through Newton’s identities,

(3.5) p`(x) = (−1)`−1`e`(x) +
`−1∑
i=1

(−1)`−i−1e`−i(x)pi(x), ` ≥ 1.

In particular, it follows that the Q` are independent of r . Moreover, ch`(E,D) is of the form

(3.6) ch`(E,D) =
(−1)`−1

(` − 1)!
c`(E,D) + Q̃`

(
c1(E,D), . . . , c`−1(E,D)

)
,

where Q̃` is a weighted homogeneous polynomial of degree `, and conversely,

(3.7) c`(E,D) = (−1)`−1(` − 1)!ch`(E,D) + Q̂`
(
ch1(E,D), . . . ,ch`−1(E,D)

)
,

where Q̂` is a weighted homogeneous polynomial of degree `.
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Example 3.1. We obtain from (3.5) that p1 = e1 and p2 = e
2
1−2e2. Thus, Q1(t1) = t1 and Q2(t1, t2) = t

2
1−2t2,

so

(3.8) ch1(E,D) = c1(E,D) and ch2(E,D) =
1
2
(c1(E,D)2 − 2c2(E,D)).

We have the following (formal) relationship between e`(x) and p`(x), and thus Q`(e1, . . . , e`):

(3.9) ln

∑
`≥0

e`(x)t
`

 =∑
`≥1

(−1)`−1

`
p`(x)t

` =
∑
`≥1

(−1)`−1

`
Q`(e1, . . . , e`)t

`.

This follows e.g. by integrating [Mac95, Chapter I, Equation (2.10’)] with respect to t. Since e1, . . . , er are
algebraically independent, (3.9) holds if we replace the e` by a` in any commutative ring. In particular, if we
apply (3.9) to e` = c`(E,D) and take the components of degree 2` (the coefficents of t`) we get

(3.10) ln
(
c(E,D)

)
`
= (−1)`−1(` − 1)!ch`(E,D);

here ()` denotes the part of form degree 2`.

3.3. The Chern character of a complex of vector bundles

Let (E,ϕ) be a complex of vector bundles of the form (2.5). Then the Chern character can be defined as

ch(E) =
N∑
k=0

(−1)k ch(Ek),

cf., e.g., [EH16, Chapter 14.2.1] and [Kar08, Chapter V.3].
If (E,ϕ) is equipped with a connection D = (Dk), for ` ≥ 1 we define a Chern character form ch`(E,D)

through (3.3). Then ch`(E,D) inherits properties from the vector bundle case. In particular (3.6) and (3.7)
hold. Also (3.10) holds and, using that

ln
(
c(E,D)

)
= ln

 N∏
k=0

c(Ek ,Dk)
(−1)k

 = N∑
k=0

(−1)k ln
(
c(Ek ,Dk)

)
,

we get that

(3.11) ch`(E,D) =
N∑
k=0

(−1)k ch`(Ek ,Dk).

In particular, ch`(E,D) represents ch`(E).

Let Θk denote the curvature matrix of Dk (in some local trivialization) and define1

(3.12) p`(E,D) =
N∑
k=0

(−1)k trΘ`
k .

In view of (3.4) and (3.11), for ` ≥ 1,

(3.13) ch`(E,D) =
i`

(2π)``!
p`(E,D).

Assume that D = (Dk) is a (1,0)-connection. Let ()(q,r) denote the part of bidegree (q,r) of a form. Since
the curvature matrices Θk (in local trivializations) consist of forms of bidegree (2,0) and (1,1), it follows that

(3.14) p(`,`)(E,D) =
N∑
k=0

(−1)k tr(Θk)`(1,1)

1To be consistent with (3.2) we should have a factor (i/2π)` in the definition of p`(E,D), cf. (3.13). However, the normalization
(3.12) is more convenient to work with.
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and by (3.13) that

(3.15) ch(`,`)(E,D) =
i`

(2π)``!
p(`,`)(E,D).

4. Connections compatible with a complex

Assume that (E,ϕ) is a complex of vector bundles of the form

(4.1) 0→ EN
ϕN−−−→ ·· ·

ϕ1−−→ E0
ϕ0−−→ E−1→ 0.

Moreover assume that each Ek is equipped with a connection Dk . Then, following [BB72], we say that the
connection D = (D−1, . . . ,DN ) on (E,ϕ) is compatible with (E,ϕ) if

(4.2) Dk−1 ◦ϕk = −ϕk ◦Dk
for k = 0, . . . ,N . In terms of the induced connection D =DEnd on EndE, this can succinctly be written as
Dϕk = 0.

Note that in contrast to above, (4.1) starts at level −1. The typical situation we consider is when we start
with a complex (2.5) that is pointwise exact outside an analytic variety Z and then restrict to X \Z; then
E−1 = 0.

Remark 4.1. By [BB72, Lemma 4.17], given a complex (E,ϕ) of vector bundles of the form (4.1) one can
always extend a given connection D−1 on E−1 to a connection D = (Dk) that is compatible with (E,ϕ)
where it is pointwise exact. In fact, Lemma 4.4 below gives an explicit formula for such a connection, see
Remark 4.5.

Remark 4.2. In [BB72], the condition of being compatible is stated without the minus sign in (4.2); our
condition on D is actually the same, but we need to introduce the minus sign since we use the conventions
of the superstructure. Indeed, if ξ is a section of Ek of form-degree 0, then Dk−1 ◦ϕkξ is defined in the
same way with or without the superstructure, while the action of ϕk on Dkξ changes sign depending on
whether the superstructure is used or not since Dkξ has form-degree 1, cf. (2.6).

Compatible connections satisfy the following Whitney formula, [BB72, Lemma 4.22], cf. Section 3.1.

Lemma 4.3. Assume that (E,ϕ) is an exact complex of vector bundles of the form (4.1) that is equipped with a
connection D = (Dk) that is compatible with (E,ϕ). Then

c(E−1,D−1) =
N∏
k=0

c(Ek ,Dk)
(−1)k .

4.1. The connection D̂ε

We will consider a specific situation and choice of compatible connection. As in previous sections, let
(E,ϕ) be a complex of vector bundles of the form (2.5) that is pointwise exact outside the analytic set Z .
Moreover, let χ be a smooth approximand of χ[1,∞), let F be a (generically nonvanishing) section of a vector
bundle such that Z ⊆ {F = 0}, and let χε = χ(|F|2/ε). Then χε ≡ 0 in a neighborhood of Z . Consider now a
fixed choice of connection D = (Dk) on (E,ϕ), and for ε > 0, define a new connection D̂ε = (D̂εk ) on (E,ϕ)
through

(4.3) D̂εk = −χεσkDϕk +Dk .

Note that if D is a (1,0)-connection, then so is D̂ε.

Lemma 4.4. The connection D̂ε is compatible with (E,ϕ) where χε ≡ 1.
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Proof. Using (2.9), (2.13) and (2.15) we obtain that

D̂εϕk = D̂
ε
k−1 ◦ϕk +ϕk ◦ D̂

ε
k

= χε (−σk−1Dϕk−1ϕk −ϕkσkDϕk) +Dk−1 ◦ϕk +ϕk ◦Dk
= −χε(σk−1ϕk−1 +ϕkσk)Dϕk +Dk−1 ◦ϕk +ϕk ◦Dk
= (1−χε)Dϕk .

In particular, D̂ε is compatible with the complex where χε ≡ 1. �

Remark 4.5. Assume that (E,ϕ) is a pointwise exact complex of vector bundles equipped with some
connection D = (Dk). Then, as in the proof above, it follows that the connection D̃ defined by

D̃k = −σkDϕk +Dk

is compatible with (E,ϕ). Moreover, D̃−1 =D−1, cf. Remark 4.1.

Assume that θk is a connection matrix for Dk in a local trivialization, i.e. Dkα = dα +θk ∧α. Then the
connection matrix for D̂εk is

θ̂εk = −χεσkDϕk +θk
and thus the curvature matrix of D̂εk equals

(4.4) Θ̂ε
k = dθ̂

ε
k + (θ̂εk )

2 = −d(χεσkDϕk) +χ2
εσkDϕkσkDϕk −χε(θkσkDϕk + σkDϕkθk) +Θk ,

where Θk is the curvature matrix of Dk .

5. The Chern current cRes(E,D)

In this section we prove that the limits as ε → 0 of products of Chern forms c`(E,D̂ε), where D̂ε is
the connection from the previous section, give the desired currents in (1.5). More generally, we prove the
following generalization of Theorem 1.1.

Theorem 5.1. Assume that (E,ϕ) is a complex of Hermitian vector bundles of the form (2.5) that is pointwise
exact outside a subvariety Z of positive codimension. Moreover assume that D = (Dk) is a connection on (E,ϕ)
and let D̂ε be the connection defined by (4.3). Then, for `1, . . . , `m ∈N>0,

(5.1) cRes`1
(E,D)∧ · · · ∧ cRes`m

(E,D) = lim
ε→0

c`1(E,D̂
ε)∧ · · · ∧ c`m(E,D̂

ε),

where the right side is defined by (3.1), is a well-defined closed pseudomeromorphic current that is independent of
the choice of χε, has support on Z, and represents c`1(E)∧ · · · ∧ c`m(E).

Theorem 1.1 is an immediate consequence of Theorem 5.1.

Proof. Let

(5.2) Mε = c`1(E,D̂
ε)∧ · · · ∧ c`m(E,D̂

ε).

We first prove that limε→0Mε exists and is a pseudomeromorphic current. This is a local statement and we
may therefore work in a local trivialization where Dk is determined by the connection matrix θk . By (4.4),
Θ̂ε
k is a (form-valued) matrix of the form

Θ̂ε
k = αk +χεβ

′
k +χ

2
εβ
′′
k + dχε ∧ β

′′′
k ,

where αk = Θk is smooth and β′k , β
′′
k and β′′′k are polynomials in σk , Dϕk , θk and exterior derivatives of

such factors. In particular αk , β
′
k , β

′′
k , and β

′′′
k are independent of ε.
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Since Mε is a polynomial in the entries of Θ̂ε
0 , . . . ,Θ̂

ε
N , see Section 3.1, we can write

Mε = A+
∑
j≥1

χ
j
εB
′
j +

∑
j≥1

χ
j−1
ε dχε ∧B′′j ,

where A, B′j , and B
′′
j are independent of ε, A is smooth, and B′j and B

′′
j are polynomials in entries of σk ,

Dϕk , θk and exterior derivatives of such factors. Let χ̂ε = χ̂(|F|2/ε), where χ̂ = χj ∼ χ[1,∞), cf. Section 2.
Then by Lemma 2.1, the limits of

χ
j
εB
′
j = χ̂εB

′
j and χ

j−1
ε dχε ∧B′′j = dχ̂ε ∧B

′′
j /j

as ε→ 0 exist and are pseudomeromorphic currents that are independent of χε. It follows that the limit
(5.1) exists and is a pseudomeromorphic current that is independent of χε.

By Lemma 4.4, D̂ε is compatible with (E,ϕ) where χε ≡ 1 and therefore, by Lemma 4.3, c(E,D̂ε) = 0
there. It follows thatMε has support where χε . 1. Note that the σk are smooth outside of Z . By Lemma 2.1,
the limit (5.1) is independent of the choice of χε. In particular, we may assume that the section F defining
χε = χ(|F|2/ε) is locally defined such that {F = 0} = Z . It then follows that the limit (5.1) has support on Z .
That (5.1) represents c`1(E)∧ · · · ∧ c`m(E) follows by Poincaré duality, since the forms on the right hand side
of (5.1) represent this class for all ε > 0. Also (5.1) is closed since the forms on the right hand side are for all
ε > 0. �

Remark 5.2. Assume that D = (Dk) in Theorem 5.1 is a (1,0)-connection. Then Θ̂ε
k only has components

of bidegree (2,0) and (1,1), cf. (4.4). It follows that (5.2) and consequently (5.1) consist of components of
bidegree (` + q,` − q) with q ≥ 0, where ` = `1 + · · ·+ `m.

6. An explicit description of Chern currents of low degrees

In this section we study the Chern current cRes(E,D) of a complex (E,ϕ) that is equipped with a (1,0)-
connection D . Our main result is the following generalization of Theorem 1.5 that is an explicit description
of cResp (E,D) in terms of the residue current R associated with (E,ϕ).

Theorem 6.1. Assume that (E,ϕ) is a complex of Hermitian vector bundles of the form (2.5) that is pointwise
exact outside a subvariety Z of codimension p, and let R be the corresponding residue current. Moreover, assume
that D = (Dk) is a (1,0)-connection on (E,ϕ) and let cRes(E,D) be the corresponding Chern current. Then

(6.1) cResp (E,D) =
(−1)p−1

(2πi)pp

N−p∑
k=0

(−1)k tr(Dϕk+1 · · ·Dϕk+pRkk+p).

Moreover

(6.2) cRes` (E,D) = 0 for 0 < ` < p

and

(6.3) cRes`1
(E,D)∧ · · · ∧ cRes`m

(E,D) = 0 for m ≥ 2 and 0 < `1 + · · ·+ `m ≤ p.

In fact, Theorem 6.1 follows from the following formulation in terms of the Chern character (forms). For
(E,ϕ) and D as in the theorem and for `1, . . . , `m ≥ 1 we let

(6.4) chRes`1
(E,D)∧ · · · ∧ chRes`m

(E,D) := lim
ε→0

ch`1(E,D̂
ε)∧ · · · ∧ ch`m(E,D̂

ε),

where D̂ε is the connection defined by (4.3). By Theorem 5.1 this is a well-defined current with support on Z
that represents ch`1(E)∧ · · · ∧ ch`m(E).
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Theorem 6.2. Assume that (E,ϕ), D, R, and p are as in Theorem 6.1. For ` ≥ 1, let chRes` (E,D) be the
corresponding Chern character current (6.4). Then

(6.5) chResp (E,D) =
1

(2πi)pp!

N−p∑
k=0

(−1)k tr(Dϕk+1 · · ·Dϕk+pRkk+p).

Moreover

(6.6) chRes` (E,D) = 0 for ` < p

and

(6.7) chRes`1
(E,D)∧ · · · ∧ chRes`m

(E,D) = 0 for m ≥ 2 and `1 + · · ·+ `m ≤ p.

Proof of Theorem 6.1. Since Q̂` in (3.7) is a polynomial of weighted degree ` we get that

(6.8) Q̂`
(
chRes1 (E,D), . . . ,chRes`−1(E,D)

)
is a sum of terms

(6.9) chResλ1
(E,D)∧ · · · ∧ chResλs

(E,D), where s ≥ 2 and λ1 + · · ·+λs = `.

Thus (6.8) vanishes by (6.7) for ` ≤ p. Now (6.1) and (6.2) follow by (3.7), (6.5), and (6.6). Also, the left hand
side of (6.3) is a sum of terms of the form (6.9) and thus it vanishes. �

Remark 6.3. Taking Theorem 6.1 for granted, by similar arguments as in the proof above, using (3.6), we
get Theorem 6.2. Thus Theorems 6.1 and 6.2 are equivalent.

Recall from Section 2.3 that if (E,ϕ) is a locally free resolution of a sheaf F of codimension p, then R`k = 0
for ` > 0. Thus the only nonvanishing residue current in (6.1) is Rp = R0

p, and hence Theorem 1.5 follows. It
may be noted that our proof of Theorem 6.1 does not become simpler in the situation of Theorem 1.5.

To organize the proof of Theorem 6.2 we will introduce a certain class OZ,`,ε of forms depending on
ε > 0 that in the limit are pseudomeromorphic currents with support on Z that vanish if ` ≤ codimZ .
Throughout this section, let (E,ϕ) be fixed as the complex from Theorems 6.1 and 6.2 and let σk be the
minimal inverse of ϕk as in Section 2.3. Let Eq,ε denote smooth forms of bidegree (∗,q) that can be written
as polynomials in χε, ∂̄χε, entries of σk , ∂σk or ∂̄σk in some local trivialization for k = 1, . . . ,N , and
smooth forms independent of ε. Here χε = χ(|F|2/ε), where χ is a smooth approximand of χ[1,∞) and F
is a generically non-vanishing section of a holomorphic vector bundle such that Z = {F = 0}. We say that
ψε ∈ Eε := ⊕Eq,ε is in OZ,`,ε if ψε is a sum of terms of the form a∧ bε, where a is a smooth form that is
independent of ε, and bε is in Eq,ε, where q < `, and vanishes where χε ≡ 1. In particular, if ψε ∈ Eq,ε
vanishes where χε ≡ 1, then ψε ∈OZ,`,ε for any ` > q. Note that

(6.10) Eq,ε ∧OZ,`,ε ⊆OZ,`+q,ε.

Lemma 6.4. Assume that Z has codimension p, and let ψε be a form in OZ,`,ε with ` ≤ p. Then limε→0ψε = 0.

Proof. Consider a term a∧ bε of ψε as above. Then bε ∈ Eq,ε, where q < ` ≤ p. By Lemma 2.1, the limit
b := limε→0 bε exists and is a pseudomeromorphic current of bidegree (∗,q). Since bε ≡ 0 where χε ≡ 1,
b has support on Z and thus b = 0 by the dimension principle, see Section 2.1. Since a is smooth and
independent of ε, it follows that limε→0(a∧ bε) = a∧ b = 0. �

Throughout this section, let D = (Dk) be a (1,0)-connection on (E,ϕ), let χ ∼ χ[1,∞), let χε and D̂
ε be

defined as in Section 4, and let c(E,D̂ε) =
∑
c`(E,D̂ε) be the corresponding Chern form defined by (3.1).

Since the limits in Theorem 5.1 are independent of the choice of χε, and the results in this section are
local statements, we may assume locally that the section F in the definition of χε = χ(|F|2/ε) is such that
{F = 0} = Z .
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Lemma 6.5. For ` ≥ 1 and ε > 0, we have

(6.11) ch`(E,D̂
ε) =

1
(2πi)``!

∂̄χ`ε ∧
N∑
k=1

(−1)k tr
(
σkDϕk(∂̄σkDϕk)

`−1
)
+OZ,`,ε.

Proof. We may work in a local trivialization; let Θ̂ε
k be the curvature matrix of D̂εk . By Remark 5.2, since the

Dk are (1,0)-connections, ch`(E,D̂ε) consists of components of bidegree (` + q,` − q) with q ≥ 0. From the
proof of Theorem 5.1 it follows that c(E,D̂ε) is in Eε and vanishes where χε ≡ 1, and consequently, the same
holds for ch(E,D̂ε). It follows that ch(`+q,`−q)(E,D̂ε) ∈OZ,`,ε for q > 0, so

(6.12) ch`(E,D̂
ε) = ch(`,`)(E,D̂

ε) +OZ,`,ε.

Since D̂ε is a (1,0)-connection, by (3.15),

(6.13) ch(`,`)(E,D̂
ε) =

i`

(2π)``!
p(`,`)(E,D̂

ε),

where p(`,`) is given by (3.14). To prove the lemma it thus suffices to show that

(6.14) p(`,`)(E,D̂
ε) = (−1)`∂̄χ`ε ∧

N∑
k=1

(−1)k tr
(
σkDϕk(∂̄σkDϕk)

`−1
)
+OZ,`,ε.

To prove (6.14), first note in view of (4.4) that since D is a (1,0)-connection,

(6.15) (Θ̂ε
k )(1,1) = −∂̄(χεσkDϕk) + (Θk)(1,1),

where Θk is the curvature matrix of Dk . We make the following decomposition:

−∂̄(χεσkDϕk) + (Θk)(1,1) = −∂̄χε ∧ σkDϕk −χε
(
∂̄(σkDϕk)− (Θk)(1,1)

)
+ (1−χε)(Θk)(1,1)

=: αk + βk +γk .
(6.16)

Let us consider

tr(Θ̂ε
k )
`
(1,1) = tr(αk + βk +γk)

`

and expand the product. Note that γk ∈OZ,1,ε, and thus by (6.10) all terms with a factor γk are in OZ,`,ε.
Next, note that since (∂̄χε)2 = 0, α2

k = 0, and since αk and βk have total degree 4 and endomorphism
degree 2, all terms containing one αk and the remaining ` −1 factors being βk are all equal to tr(αk ∧β`−1k )
by (2.7). To conclude,

(6.17) tr(Θ̂ε
k )
`
(1,1) = ` tr(αk ∧ β

`−1
k ) + trβ`k +OZ,`,ε.

We have that

` tr(αk ∧ β`−1k ) = (−1)`∂̄χ`ε ∧ tr
(
σkDϕk

(
∂̄(σkDϕk)− (Θk)(1,1)

)`−1)
= (−1)`∂̄χ`ε ∧ tr

(
σkDϕk

(
∂̄(σkDϕk)

)`−1)
+OZ,`,ε,

since `χ`−1ε ∂̄χε = ∂̄χ`ε, cf. (2.1), and in the middle expression all terms having a factor (Θk)(1,1) also contain
a factor ∂̄χ`ε, and thus are in OZ,`,ε. Moreover, by (2.8) and (2.12),

∂̄(σkDϕk) = ∂̄σkDϕk − σk∂̄(Dϕk) = ∂̄σkDϕk − σk(Θk−1)(1,1)ϕk + σkϕk(Θk)(1,1),

and hence

(6.18) ` tr(αk ∧ β`−1k ) = (−1)`∂̄χ`ε ∧ tr
(
σkDϕk

(
∂̄σkDϕk

)`−1)
+OZ,`,ε,
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since all terms containing a factor (Θk)(1,1) or (Θk−1)(1,1) also contain a factor ∂̄χ`ε. Note that α0 = 0 since
ϕ0 = 0. It thus follows from (6.17) and (6.18) that

p(`,`)(E,D̂
ε) =

N∑
k=0

(−1)k tr(Θ̂ε
k )
`
(1,1)

= (−1)`∂̄χ`ε ∧
N∑
k=1

(−1)k tr
(
σkDϕk

(
∂̄σkDϕk

)`−1)
+

N∑
k=0

(−1)k trβ`k +OZ,`,ε.

Thus, to prove (6.14) it suffices to show that
∑N
k=0(−1)k trβ

`
k vanishes for ` ≥ 1. Outside Z, let D̃ be the

connection on (E,ϕ) defined by

(6.19) D̃k := −σkDϕk +Dk

and let c̃ = c(E,D̃) be the corresponding Chern form defined by (3.1). If follows from Lemma 4.4 that D̃ is
compatible with (E,ϕ) and thus by Lemma 4.3, c̃j vanishes for j ≥ 1. For ` ≥ 1, let p̃` := p(`,`)(E,D̃), where
p(`,`) is given by (3.14). By (3.15) and (3.6), p̃` is a polynomial in c̃(1,1), . . . , c̃(`,`). Since c̃(j,j) vanishes for any

j ≥ 1, p̃` = 0. Note that βk = χε(Θ̃k)(1,1), where Θ̃k is the curvature matrix corresponding to D̃k . Thus

N∑
k=0

(−1)k trβ`k = χ
`
ε

N∑
k=0

(−1)k tr(Θ̃k)`(1,1) = χ
`
εp̃` = 0

for ε > 0. This concludes the proof of (6.14). �

Lemma 6.6. For ` ≥ 1 and ε > 0, we have

(6.20) ∂̄χε ∧
N∑
k=1

(−1)k tr
(
σkDϕk(∂̄σkDϕk)

`−1
)
=

(−1)`
N−∑̀
k=0

(−1)k∂̄χε ∧ tr
(
σk+`∂̄σk+`−1 · · · ∂̄σk+1Dϕk+1 · · ·Dϕk+`

)
+OZ,`,ε + ∂̄OZ,`,ε.

If ` > N , the sum on the right hand side should be interpreted as 0.

Here ∂̄OZ,`,ε means forms of the form ∂̄ψε, where ψε ∈OZ,`,ε.

Proof. For ` = 1 the sums differ only by a shift in the indices, so we may assume ` ≥ 2. For fixed k ∈Z and
m,r, s ≥ 0, let

ρr,sk,m = ∂̄χε ∧ tr
(
σk+m+1∂̄σk+m · · · ∂̄σk+1(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+mϕk+m+1

)
.

If m = 0, then the factor ∂̄σk+m · · · ∂̄σk+1 should be interpreted as 1. Moreover since (E,ϕ) starts at level 0
and ends at level N , we interpret ϕj and σj as 0 if j > N or j < 1, and consequently we interpret ρr,sk,m as 0
if k +m ≥N or k ≤ 0.

We claim that

(6.21) ∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk(∂̄σk−1Dϕk−1)r(Dϕk∂̄σk)s+1Dϕk · · ·Dϕk+m

)
=

∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk(∂̄σk−1Dϕk−1)r+1(Dϕk∂̄σk)sDϕk · · ·Dϕk+m

)
+ ρr,sk−1,m + ρr,sk,m +OZ,r+s+m+2,ε + ∂̄OZ,r+s+m+2,ε.
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Let us take (6.21) for granted and let ρtk,m =
∑t
r=0ρ

r,t−r
k,m . Then by inductively applying (6.21) to r = 0, . . . , t

with s = t − r, we get

(6.22) ∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk(Dϕk∂̄σk)t+1Dϕk · · ·Dϕk+m

)
=

∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk−1(Dϕk−1∂̄σk−1)tDϕk−1 · · ·Dϕk+m

)
+ ρtk−1,m + ρtk,m +OZ,t+m+2,ε + ∂̄OZ,t+m+2,ε.

It follows that, for fixed m and t,

N−m∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk(Dϕk∂̄σk)t+1Dϕk · · ·Dϕk+m

)
=

N−m∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk−1(Dϕk−1∂̄σk−1)tDϕk−1 · · ·Dϕk+m

)
− ρt0,m + (−1)N−mρtN−m,m +OZ,t+m+2,ε + ∂̄OZ,t+m+2,ε.

Thus, since ρr,s0,m and ρr,sN−m,m vanish,

(6.23)
N−m∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+m∂̄σk+m−1 · · · ∂̄σk(Dϕk∂̄σk)t+1Dϕk · · ·Dϕk+m

)
=

−
N−m−1∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+m+1∂̄σk+m · · · ∂̄σk(Dϕk∂̄σk)tDϕk · · ·Dϕk+m+1

)
+OZ,t+m+2,ε + ∂̄OZ,t+m+2,ε.

Assume that 2 ≤ ` ≤N . By inductively applying (6.23) to m = 0, . . . , ` − 2 with t = ` − 2−m, we get

N∑
k=1

(−1)k∂̄χε ∧ tr
(
σk(Dϕk∂̄σk)

`−1Dϕk
)

= −
N−1∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+1∂̄σk(Dϕk∂̄σk)

`−2DϕkDϕk+1
)
+OZ,`,ε + ∂̄OZ,`,ε

= · · ·

= (−1)`−1
N−`+1∑
k=1

(−1)k∂̄χε ∧ tr
(
σk+`−1∂̄σk+`−2 · · · ∂̄σkDϕk · · ·Dϕk+`−1

)
+OZ,`,ε + ∂̄OZ,`,ε,

which after a shift in indices is exactly (6.20). If ` > N and we perform the same induction, after N −1 steps
we end up with

(−1)N ∂̄χε ∧ tr
(
σN ∂̄σN−1 · · · ∂̄σ1(Dϕ1∂̄σ1)

`−NDϕ1 · · ·DϕN
)
+OZ,`,ε + ∂̄OZ,`,ε,

which by (6.22) equals ρ`−N−10,N−1 + ρ`−N−11,N−1 +OZ,`,ε =OZ,`,ε; thus (6.20) holds also in this case.

It remains to prove (6.21). To do this let us replace the first factor Dϕk∂̄σk in the left hand side of
(6.21) by the right hand side of (2.17); we then get three terms. The term corresponding to the second term
∂̄σk−1Dϕk−1 in (2.17) is precisely the first term in the right hand side of (6.21). Next, by (2.13) and (2.16),

ϕk−1Dϕk∂̄σk =Dϕk−1ϕk∂̄σk =Dϕk−1∂̄σk−1ϕk−1.

Applying this repeatedly we get

ϕk−1(Dϕk∂̄σk)
s = (Dϕk−1∂̄σk−1)

sϕk−1.
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Using this and (2.13) (to “move” the D), we get

σk+m∂̄σk+m−1 · · · ∂̄σk(∂̄σk−1Dϕk−1)rD∂̄σk−1ϕk−1(Dϕk∂̄σk)sDϕk · · ·Dϕk+m =

σk+m∂̄σk+m−1 · · · ∂̄σk(∂̄σk−1Dϕk−1)rD∂̄σk−1(Dϕk−1∂̄σk−1)sDϕk−1 · · ·Dϕk+m−1ϕk+m.

It follows that the term corresponding to the first term in (2.17) equals ρr,sk−1,m.
Finally we consider the term corresponding to the last term in (2.17). As above, using (2.13) and (2.16), we

get that
(∂̄σk−1Dϕk−1)

rϕk = ϕk(∂̄σkDϕk)
r

and thus, using this and (2.14) (to “move” the ∂̄),

(6.24) σk+m∂̄σk+m−1 · · · ∂̄σk(∂̄σk−1Dϕk−1)rϕkD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m =

∂̄σk+m · · · ∂̄σk+1σkϕk(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m.

In view of (2.15) we can replace the factor σkϕk by IdEk −ϕk+1σk+1:

(6.25) ∂̄σk+m · · · ∂̄σk+1σkϕk(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m =

∂̄σk+m · · · ∂̄σk+1(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m+

(−∂̄σk+m · · · ∂̄σk+1ϕk+1σk+1(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m) =: ξ + δ.

By repeatedly using (2.16) we get that

∂̄σk+m · · · ∂̄σk+1ϕk+1σk+1 = ∂̄σk+m · · · ∂̄σk+2ϕk+2∂̄σk+2σk+1 = · · · = ϕk+m+1∂̄σk+m+1 · · · ∂̄σk+2σk+1.

It follows, using (2.14), that δ in (6.25) equals

δ = −ϕk+m+1σk+m+1∂̄σk+m · · · ∂̄σk+1(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m =: −ϕk+m+1β.

Note that degβ = 4κ+2 and dege β = 2κ+1, where κ =m+ r + s+1, and since

degϕk+m+1 = degeϕk+m+1 = 1,

we get, in view of (2.7), that tr(ϕk+m+1β) = − tr(βϕk+m+1) and it follows that this terms equals ρr,sk,m.
It remains to consider ξ in (6.25). Let

η := σk+m∂̄σk+m−1 · · · ∂̄σk+1(∂̄σkDϕk)rD∂̄σk(Dϕk∂̄σk)sDϕk · · ·Dϕk+m
Then, by (2.8), ∂̄η = ξ + ξ ′ , where ξ ′ consists of a sum of terms with a factor ∂̄Dϕj or ∂̄D∂̄σj . Let
q =m+r+s+2. Then, note that ∂̄χε∧η is in OZ,q,ε, and thus ∂̄χε∧ ∂̄η = −∂̄(∂̄χε∧η) ∈ ∂̄OZ,q,ε. Moreover,
by (2.12), each term in ξ ′ has a factor that is a smooth (1,1)-form. Therefore ∂̄χε ∧ ξ ′ ∈OZ,q,ε, and hence
tr ∂̄χε ∧ ξ = − tr(∂̄χε ∧ ξ ′) + tr(∂̄χε ∧ ∂̄η) ∈OZ,q,ε + ∂̄OZ,q,ε. This concludes the proof of (6.21). �

Proof of Theorem 6.2. We first prove (6.5). Since Z has codimension p and χp ∼ χ[1,∞), by Lemmas 6.4, 6.5,
and 6.6, and by (2.18), we have

chResp (E,D) = lim
ε→0

chp(E,D̂
ε)

=
1

(2πi)pp!
lim
ε→0

∂̄χ
p
ε ∧

N∑
k=1

(−1)k tr
(
σkDϕk(∂̄σkDϕk)

p−1
)

=
(−1)p

(2πi)pp!

N−p∑
k=0

(−1)k lim
ε→0

∂̄χ
p
ε ∧ tr

(
σk+p∂̄σk+p−1 · · · ∂̄σk+1Dϕk+1 · · ·Dϕk+p

)
=

(−1)p

(2πi)pp!

N−p∑
k=0

(−1)k tr
(
Rkk+pDϕk+1 · · ·Dϕk+p

)
.
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Since Dϕk+1 · · ·Dϕk+p and Rkk+p both have total degree 2p and endomorphism degree p, it follows from
(2.7) that

tr
(
Rkk+pDϕk+1 · · ·Dϕk+p

)
= (−1)p tr

(
Dϕk+1 · · ·Dϕk+pRkk+p

)
,

and thus (6.5) follows.
Next, by Theorem 5.1 and Remark 5.2, chRes` (E,D) is a pseudomeromorphic current with support on Z

and with components of bidegree (` + q,` − q) where q ≥ 0. Therefore it vanishes by the dimension principle
when ` < p, see Section 2.1. This proves (6.6).

It remains to prove (6.7). From the beginning of the proof of Lemma 6.5 and (6.10) it follows that

(6.26) ch`1(E,D̂
ε)∧ · · · ∧ ch`m(E,D̂

ε) = Cp(`1,`1)(E,D̂
ε)∧ · · · ∧ p(`m,`m)(E,D̂

ε) +OZ,`1+···+`m,ε,

for some appropriate constant C. By (6.14), the fact that (∂̄χε)2 = 0, and (6.10), it follows that

p(`1,`1)(E,D̂
ε)∧ · · · ∧ p(`m,`m)(E,D̂

ε) ∈OZ,p,ε

if m ≥ 2 and `1 + · · ·+ `m ≤ p. Thus the limit of (6.26) vanishes in this case, which proves (6.7). �

Assume that (E,ϕ) is a complex of Hermitian vector bundles of the form (2.5) such that Hk(E) has pure
codimension p or vanishes for k = 0, . . . ,N , and let Z = ∪suppHk(E). Then (E,ϕ) is pointwise exact
outside Z, which has codimension p. Now, by combining Theorem 2.2 and Theorem 6.1, we obtain the
following generalization of Theorem 1.4.

Corollary 6.7. Assume that (E,ϕ) is a complex of Hermitian vector bundles of the form (2.5) such that Hk(E)
has pure codimension p or vanishes for k = 0, . . . ,N . Moreover, assume that D = (Dk) is a (1,0)-connection on
(E,ϕ). Then

cResp (E,D) = (−1)p−1(p − 1)![E].

Moreover (1.10) and (1.11) hold.

Here [E] is the cycle of (E,ϕ) defined by (2.19). In particular, it follows from Corollary 6.7 that cResp (E,D)
is independent of the choice of Hermitian metric and (1,0)-connection D on (E,ϕ).

By equipping a complex of vector bundles (E,ϕ) with Hermitian metrics and (1,0)-connections and
taking cohomology we get the following generalization of (1.13).

Corollary 6.8. Assume that (E,ϕ) is a complex of vector bundles of the form (2.5) such that Hk(E) has pure
codimension p or vanishes for k = 0, . . . ,N . Then[

(−1)p−1(p − 1)![E]
]
= cp(E).

7. An example

We will compute (products of) Chern currents cRes(E,D) for an explicit choice of (E,ϕ) and D . Let
J ⊆ O

P
2
[t,x,y]

be defined by J = J (yk ,x`ym), where m < k, and let OZ := O
P

2/J . Then Z has pure

dimension 1, since Zred = {y = 0}, which is irreducible. However, note that J has an embedded prime
J (x,y) of dimension 0. Now F = OZ has a locally free resolution of the form

(7.1) 0→O(−k − `)
ϕ2−−→O(−k)⊕O(−` −m)

ϕ1−−→O
P

2 →F → 0,

where in the trivialization in the coordinate chart C2 =C
2
(x,y)

(7.2) ϕ2 =
[
−x`
yk−m

]
and ϕ1 =

[
yk x`ym

]
.
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Let us start by computing the Chern class of F . Let ω denote c1(O(1)). Then

c(E0) = c(OP
2) = 1

c(E1) = c
(
O(−k)⊕O(−` −m)

)
= 1− (k + ` +m)ω+ k(` +m)ω2

c(E2) = c
(
O(−k − `)

)
= 1− (k + `)ω,

see e.g. [Ful98, Chapter 3]. Moreover,

(7.3) c(E1)
−1 = 1− c1(E1) + c1(E1)2 − c2(E1);

here the sum ends in degree 2, since we are in dimension 2. Thus, by (1.2),

c(F ) = c(E0)c(E1)
−1c(E2) = 1− c1(E1) + c1(E2) + c1(E1)2 − c2(E1)− c1(E1)c1(E2)

= 1+mω+
(
m2 + `(m− k)

)
ω2.

In particular,

(7.4) c1(F ) =mω and c2(F ) =
(
m2 + `(m− k)

)
ω2.

7.1. Chern currents

Assume that each Ek in (7.1) is equipped with the metric induced by the standard metric on O(1)→ P
2, in

turn induced by the standard metric on C
3, and let Dk the corresponding Chern connection. Let D = (Dk),

let χ ∼ χ[1,∞), and let χε and D̂
ε be as in Section 4. By Theorem 1.4,

cRes1 (E,D) = [F ] = [Z] =m[y = 0],

which clearly is a representative of c1(F ), see (7.4), with support on suppF = Zred = {y = 0}. We want to
compute cRes2 (E,D) and (cRes1 )2(E,D). Note that these currents are not covered by Theorem 1.5, since p = 1
in this case.

Let p̂` = p(`,`)(E,D̂ε), where p(`,`) is given by (3.14). For degree reasons, ch2(E,D̂ε) = ch(2,2)(E,D̂ε) and
ch21(E,D̂

ε) = ch2(1,1)(E,D̂
ε), cf. Remark 5.2. It follows in view of (3.8) and (3.15) that

(7.5) c2(E,D̂
ε) =

( i
2π

)2 1
2
(p̂21 − p̂2) and c21(E,D̂

ε) =
( i
2π

)2
p̂21.

Thus, to compute cRes2 (E,D) and (cRes1 )2(E,D), it suffices to calculate the limits of p̂21 and p̂2 as ε→ 0.

Note first that only two of the standard coordinate charts of P2 intersect Z . In C
2
(t,y), we have that

ϕ1 = ym
[
yk−m 1

]
, so σ1 = (1/ym)σ ′1, where σ

′
1 is smooth. By using (4.4) one can check that the limits of

p̂21 and p̂2 put no mass at {t = y = 0}. Thus it is enough to compute the limits in the coordinate chart C2
(x,y)

where ϕj are given by (7.2). Note that ϕ1 = ymϕ′1, where ϕ
′
1 = [yk−m x`] has rank 1 outside of the origin.

Then σ1 = (1/ym)σ ′1, where σ
′
1 is smooth outside the origin, and

(7.6) σ ′1ϕ
′
1|{y=0} =

[
0 0
0 1

]
when x , 0 and ϕ′1σ

′
1 = 1 outside the origin. Also note that σ2 is smooth outside the origin, since ϕ2 has

constant rank there. Let O′Z,`,ε be defined as in the beginning of Section 6 but with σ1 replaced by σ ′1, and
let Oε =O′Z,2,ε. Then ψε ∈Oε is smooth outside the origin and, by arguments as in the proof of Lemma 6.4,
limε→0ψε = 0.

Next, let ω̂ = (2π/i)ω, where ω now denotes the Fubini-Study form. Then

(7.7) Θ1 =
[
−k 0
0 −(` +m)

]
ω̂, Θ2 = −(k + `)ω̂.
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In particular, Θk is of bidegree (1,1). Let D̃ = (D̃k) be the connection on P
2 \Z defined by (6.19) and let

Θ̃k be the corresponding curvature forms. Then a computation, cf. (6.15) and (6.16), yields

(7.8) (Θ̂ε
k )(1,1) = −∂̄χε ∧ σkDϕk +χε(Θ̃k)(1,1) + (1−χε)Θk .

Let us start by computing p̂21. Recall from the proof of Lemma 6.5 that p̃j = − tr(Θ̃1)
j
(1,1) + tr(Θ̃2)

j
(1,1)

vanishes where χε . 0 for j = 1,2. Moreover, note in view of (7.7) that − trΘ1 + trΘ2 =mω̂. It follows that

p̂1 = − tr(Θ̂ε
1)(1,1) + tr(Θ̂ε

2)(1,1) = ∂̄χε ∧
(
tr(σ1Dϕ1)− tr(σ2Dϕ2)

)
+ (1−χε)mω̂.

Note that (1−χε)∂̄χε = (1/2)∂̄χ̃ε, where χ̃ = 2(χ −χ2/2) ∼ χ[1,∞). Using this and that (∂̄χε)2 = 0, we get

p̂21 = 2mω̂∧ (1−χε)∂̄χε ∧
(
tr(σ1Dϕ1)− tr(σ2Dϕ2)

)
+ (1−χε)2m2ω̂2

=mω̂∧ ∂̄χ̃ε ∧ tr(σ1Dϕ1) +Oε.

Note that

(7.9) σ1Dϕ1 = −
Dym

ym
σ ′1ϕ

′
1 +θ1σ

′
1ϕ
′
1 + σ

′
1Dϕ

′
1.

Therefore, in view of the Poincaré-Lelong formula, cf. (1.7) and (7.6), since σ ′1ϕ
′
1 is smooth outside the origin,

(7.10) ∂̄χ̃ε ∧ σ1Dϕ1 = −∂̄χ̃ε ∧
Dym

ym
σ ′1ϕ

′
1 +Oε −−−−→ε→0

2π
i
m[y = 0]

[
0 0
0 1

]
outside the origin. Since the limit is a pseudomeromorphic (1,1)-current, (7.10) holds everywhere by the
dimension principle. It follows that

(7.11) lim
ε→0

p̂21 = lim
ε→0

mω̂∧ ∂̄χ̃ε ∧ tr(σ1Dϕ1) =
2π
i
m2ω̂∧ [y = 0].

Let us next consider p̂2 = − tr(Θ̂1)
2
(1,1) + tr(Θ̂2)

2
(1,1). A computation using (2.7), cf. (7.8), yields

tr(Θ̂ε
k )

2
(1,1) = tr

(
− ∂̄χε ∧ σkDϕk −χε∂̄(σkDϕk) +Θk

)2
(7.12)

= ∂̄χ2
ε ∧ tr

(
σkDϕk∂̄(σkDϕk)

)
− 2∂̄χε ∧ tr(σkDϕkΘk) + tr

(
χε(Θ̃k)(1,1) + (1−χε)Θk

)2
.

Again using that p̃j = − tr(Θ̃1)
j
(1,1) + tr(Θ̃2)

j
(1,1) vanishes where χε . 0, we get

(7.13) −
(
χε(Θ̃1)(1,1) + (1−χε)Θ1

)2
+
(
χε(Θ̃2)(1,1) + (1−χε)Θ2

)2
=Oε→ 0.

Note that ∂̄χε ∧ σ2Dϕ2Θ2 is in Oε. Therefore, in view of (7.7) and (7.10),

(7.14) 2∂̄χε ∧ tr(σ1Dϕ1Θ1)− 2∂̄χε ∧ tr(σ2Dϕ2Θ2) =

− 2∂̄χε ∧
Dym

ym
tr(σ ′1ϕ

′
1Θ1) +Oε −−−−→

ε→0
−2π
i
2m(` +m)ω̂∧ [y = 0].

Let us next consider the contribution from the first term

(7.15) ∂̄χ2
ε ∧ tr

(
σkDϕk∂̄(σkDϕk)

)
= ∂̄χ2

ε ∧ tr
(
σkDϕk∂̄σkDϕk

)
− ∂̄χ2

ε ∧ tr
(
σkDϕkσk∂̄(Dϕk)

)
in (7.12). We start by considering the contribution from the first term in (7.15). By arguments as in the proof
of Lemma 6.6, we get that

(7.16) − ∂̄χ2
ε ∧ tr

(
σ1Dϕ1∂̄σ1Dϕ1

)
+ ∂̄χ2

ε ∧ tr
(
σ2Dϕ2∂̄σ2Dϕ2

)
=

∂̄χ2
ε ∧ tr

(
σ2∂̄σ1Dϕ1Dϕ2

)
− ∂̄χ2

ε ∧ tr
(
D∂̄σ1Dϕ1

)
+ ∂̄χ2

ε ∧ tr
(
D∂̄σ2Dϕ2

)
.
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Taking the limit of the first term in the right hand side of (7.16), we get

lim
ε→0

∂̄χ2
ε ∧ tr(σ2∂̄σ1Dϕ1Dϕ2) = lim

ε→0
∂̄χ2

ε ∧ tr(Dϕ1Dϕ2σ2∂̄σ1)

= tr(Dϕ1Dϕ2R
0
2)

=
(2π
i

)2
`(2k −m)[0].

(7.17)

Here, the first equality follows from (2.7), the second equality from (2.18), and the third equality is computed
in [LW18, Example 5.2]. Next, by (2.7), tr(D∂̄σ1Dϕ1) = − tr(Dϕ1D∂̄σ1). Using (2.10), (2.11) and the fact that
ϕ′1σ

′
1 = 1, so ϕ′1∂̄σ

′
1 = 0, we have

∂̄χ2
ε ∧Dϕ1D∂̄σ1 = ∂̄χ

2
ε ∧D(Dϕ1∂̄σ1) = ∂̄χ

2
ε ∧D(Dϕ′1∂̄σ

′
1) = ∂̄χ

2
ε ∧Dϕ′1D∂̄σ

′
1.

If we let f be the section of O(k −m)⊕O(`) defined by f =
[
yk−m x`

]
, then ϕ2,ϕ

′
1 are the morphisms

in the Koszul complex defined by (contraction with) f . If we let σ be the minimal inverse of f , when f is
viewed as a section of Hom(O(−(k −m))⊕O(−`),O), then σ2 and σ ′1 are given by multiplication with σ .
One may verify that Dϕ2 and Dϕ′1 are given by contraction with Df , and that D∂̄σ2 and D∂̄σ ′1 are given
by multiplication with D∂̄σ . A calculation then yields that

tr
(
Dϕ′1D∂̄σ

′
1

)
= − tr

(
D∂̄σ2Dϕ2

)
,

so by (7.16),

(7.18) − ∂̄χ2
ε ∧ tr

(
σ1Dϕ1∂̄σ1Dϕ1

)
+ ∂̄χ2

ε ∧ tr
(
σ2Dϕ2∂̄σ2Dϕ2

)
= ∂̄χ2

ε ∧ tr
(
σ2∂̄σ1Dϕ1Dϕ2

)
.

Thus, in view of (7.18) and (7.17),

(7.19) − ∂̄χ2
ε ∧ tr

(
σ1Dϕ1∂̄σ1Dϕ1

)
+ ∂̄χ2

ε ∧ tr
(
σ2Dϕ2∂̄σ2Dϕ2

)
−−−−→
ε→0

(2π
i

)2
`(2k −m)[0].

Next, let us consider the contribution from the second term in (7.15). As above, using (2.12), cf. (7.9),

∂̄χ2
ε ∧

(
σ1Dϕ1σ1∂̄(Dϕ1)

)
= −∂̄χ2

ε ∧
(
σ1Dϕ1σ1ϕ1Θ1

)
= ∂̄χ2

ε ∧
(Dym
ym

σ ′1ϕ
′
1Θ1

)
+Oε.

Note that ∂̄χ2
ε ∧ σ2Dϕ2σ2∂̄(Dϕ2) is in Oε. Thus, by (7.10) and (7.7),

(7.20) ∂̄χ2
ε ∧ tr

(
σ1Dϕ1σ1∂̄(Dϕ1)

)
− ∂̄χ2

ε ∧ tr
(
σ2Dϕ2σ2∂̄(Dϕ2)

)
−−−−→
ε→0

2π
i
m(` +m)ω̂∧ [y = 0],

cf. (7.14).
From (7.15), (7.19), and (7.20), we conclude that

(7.21) − ∂̄χ2
ε ∧ tr

(
σ1Dϕ1∂̄(σ1Dϕ1)

)
+ ∂̄χ2

ε ∧ tr
(
σ2Dϕ2∂̄(σ2Dϕ2)

)
−−−−→
ε→0(2π

i

)2
`(2k −m)[0] +

2π
i
m(` +m)ω̂∧ [y = 0].

Next, from (7.12), (7.13), (7.14), and (7.21), we conclude that

(7.22) p̂2 = − tr(Θ̂1)
2
(1,1) + tr(Θ̂2)

2
(1,1) −−−−→ε→0

−(2π/i)m(` +m)ω̂∧ [y = 0] + (2π/i)2`(2k −m)[0].

Finally from (7.5), (7.11), and (7.22) we conclude that

cRes2 (E,D) =
( i
2π

)2 1
2
lim
ε→0

(p̂21 − p̂2) =
1
2

(
m(2m+ `)ω∧ [y = 0]− `(2k −m)[0]

)
and that

(cRes1 )2(E,D) =
( i
2π

)2
lim
ε→0

p̂21 =m
2ω[y = 0].
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Taking cohomology, since [[0]] = [[y = 0]∧ω] = [ω2], we get[
cRes2 (E,D)

]
=

(
m2 + `(m− k)

)
[ω2] = c2(F ) and

[
(cRes1 )2(E,D)

]
=m2[ω2] = c1(F )2,

see (7.4).
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