Pietro Corvaja ; Francesco Zucconi - Quartic surfaces, their bitangents and rational points

epiga:8987 - Épijournal de Géométrie Algébrique, 10 février 2023, Volume 7 - https://doi.org/10.46298/epiga.2022.8987
Quartic surfaces, their bitangents and rational pointsArticle

Auteurs : Pietro Corvaja ; Francesco Zucconi

    Let X be a smooth quartic surface not containing lines, defined over a number field K. We prove that there are only finitely many bitangents to X which are defined over K. This result can be interpreted as saying that a certain surface, having vanishing irregularity, contains only finitely many rational points. In our proof, we use the geometry of lines of the quartic double solid associated to X. In a somewhat opposite direction, we show that on any quartic surface X over a number field K, the set of algebraic points in X(\overeline K) which are quadratic over a suitable finite extension K' of K is Zariski-dense.


    Volume : Volume 7
    Publié le : 10 février 2023
    Accepté le : 6 octobre 2022
    Soumis le : 20 janvier 2022
    Mots-clés : Mathematics - Number Theory

    1 Document citant cet article

    Statistiques de consultation

    Cette page a été consultée 610 fois.
    Le PDF de cet article a été téléchargé 544 fois.