A characterization of finite étale morphisms in tensor triangular
geometryArticleAuteurs : Beren Sanders

0000-0002-9550-6447
Beren Sanders
We provide a characterization of finite étale morphisms in tensor triangular geometry. They are precisely those functors which have a conservative right adjoint, satisfy Grothendieck--Neeman duality, and for which the relative dualizing object is trivial (via a canonically-defined map).
Comment: 25 pages. Proposition 3.8 revised; added Remark 3.11--Example 3.12, Remark 4.10--Remark 4.25, and Corollary 5.13
Volume : Volume 6
Publié le : 21 octobre 2022
Accepté le : 21 octobre 2022
Soumis le : 1 juillet 2021
Mots-clés : Mathematics - Category Theory, Mathematics - Algebraic Geometry, Mathematics - Algebraic Topology
Financement :
Source : OpenAIRE Graph- Categorical Methods for Classical, Equivariant, and Motivic Homotopy Theory; Financeur: National Science Foundation; Code: 1903429