Dmitrii Pirozhkov - Stably semiorthogonally indecomposable varieties

epiga:7700 - Épijournal de Géométrie Algébrique, 27 mars 2023, Volume 7 - https://doi.org/10.46298/epiga.2023.volume7.7700
Stably semiorthogonally indecomposable varietiesArticle

Auteurs : Dmitrii Pirozhkov ORCID

    A triangulated category is said to be indecomposable if it admits no nontrivial semiorthogonal decompositions. We introduce a definition of a noncommutatively stably semiorthogonally indecomposable (NSSI) variety. This propery implies, among other things, that each smooth proper subvariety has indecomposable derived category of coherent sheaves, and that if $Y$ is NSSI, then for any variety $X$ all semiorthogonal decompositions of $X \times Y$ are induced from decompositions of $X$. We prove that any variety whose Albanese morphism is finite is NSSI, and that the total space of a fibration over NSSI base with NSSI fibers is also NSSI. We apply this indecomposability to deduce that there are no phantom subcategories in some varieties, including surfaces $C \times \mathbb{P}^1$, where $C$ is any smooth proper curve of positive genus.


    Volume : Volume 7
    Publié le : 27 mars 2023
    Accepté le : 16 décembre 2022
    Soumis le : 24 juillet 2021
    Mots-clés : Mathematics - Algebraic Geometry

    2 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 528 fois.
    Le PDF de cet article a été téléchargé 551 fois.