Dean Bisogno ; Wanlin Li ; Daniel Litt ; Padmavathi Srinivasan - Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa class

epiga:6849 - Épijournal de Géométrie Algébrique, 30 mars 2023, Volume 7 - https://doi.org/10.46298/epiga.2023.volume7.6849
Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa classArticle

Auteurs : Dean Bisogno ; Wanlin Li ; Daniel Litt ; Padmavathi Srinivasan

    Let l be a prime and G a pro-l group with torsion-free abelianization. We produce group-theoretic analogues of the Johnson/Morita cocycle for G -- in the case of surface groups, these cocycles appear to refine existing constructions when l=2. We apply this to the pro-l etale fundamental groups of smooth curves to obtain Galois-cohomological analogues, and discuss their relationship to work of Hain and Matsumoto in the case the curve is proper. We analyze many of the fundamental properties of these classes and use them to give an example of a non-hyperelliptic curve whose Ceresa class has torsion image under the l-adic Abel-Jacobi map.


    Volume : Volume 7
    Publié le : 30 mars 2023
    Accepté le : 21 novembre 2022
    Soumis le : 21 octobre 2020
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Geometric Topology,Mathematics - Number Theory,2010. 14C25, 14F20, 14F30, 14F35, 14G32, 14H45
    Financement :
      Source : OpenAIRE Graph
    • Anabelian Methods in Arithmetic and Algebraic Geometry; Financeur: National Science Foundation; Code: 2001196

    Statistiques de consultation

    Cette page a été consultée 482 fois.
    Le PDF de cet article a été téléchargé 483 fois.