Finiteness for self-dual classes in integral variations of Hodge
structureArticle
Auteurs : Benjamin Bakker ; Thomas W. Grimm ; Christian Schnell ; Jacob Tsimerman
NULL##NULL##NULL##NULL
Benjamin Bakker;Thomas W. Grimm;Christian Schnell;Jacob Tsimerman
We generalize the finiteness theorem for the locus of Hodge classes with fixed self-intersection number, due to Cattani, Deligne, and Kaplan, from Hodge classes to self-dual classes. The proof uses the definability of period mappings in the o-minimal structure $\mathbb{R}_{\mathrm{an},\exp}$.
Comment: v3: final version
Volume : Volume spécial en l'honneur de Claire Voisin
Publié le : 31 mai 2023
Accepté le : 6 mars 2023
Soumis le : 31 mai 2022
Mots-clés : Mathematics - Algebraic Geometry, High Energy Physics - Theory
Financement :
Source : OpenAIRE Graph- CAREER: Hodge Theory and Moduli; Financeur: National Science Foundation; Code: 1848049
- CAREER: Hodge Theory and D-Modules in Algebraic Geometry; Financeur: National Science Foundation; Code: 1551677