Finiteness for self-dual classes in integral variations of Hodge
structureArticle
Authors: Benjamin Bakker ; Thomas W. Grimm ; Christian Schnell ; Jacob Tsimerman
NULL##NULL##NULL##NULL
Benjamin Bakker;Thomas W. Grimm;Christian Schnell;Jacob Tsimerman
We generalize the finiteness theorem for the locus of Hodge classes with
fixed self-intersection number, due to Cattani, Deligne, and Kaplan, from Hodge
classes to self-dual classes. The proof uses the definability of period
mappings in the o-minimal structure $\mathbb{R}_{\mathrm{an},\exp}$.