The cotangent bundle of K3 surfaces of degree twoArticle
Auteurs : Fabrizio Anella ; Andreas Höring
NULL##NULL
Fabrizio Anella;Andreas Höring
K3 surfaces have been studied from many points of view, but the positivity of the cotangent bundle is not well understood. In this paper we explore the surprisingly rich geometry of the projectivised cotangent bundle of a very general polarised K3 surface $S$ of degree two. In particular, we describe the geometry of a surface $D_S \subset \mathbb{P}(\Omega_S)$ that plays a similar role to the surface of bitangents for a quartic in $\mathbb{P}^3$.
Comment: 30 pages
Volume : Volume spécial en l'honneur de Claire Voisin
Publié le : 10 juillet 2023
Accepté le : 27 mars 2023
Soumis le : 24 août 2022
Mots-clés : Mathematics - Algebraic Geometry
Financement :
Source : OpenAIRE Graph- Foliations and algebraic geometry; Financeur: French National Research Agency (ANR); Code: ANR-16-CE40-0008
- Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties; Financeur: European Commission; Code: 854361