Devlin Mallory - Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties

epiga:10868 - Épijournal de Géométrie Algébrique, 6 décembre 2023, Volume 7 - https://doi.org/10.46298/epiga.2023.10868
Finite $F$-representation type for homogeneous coordinate rings of non-Fano varietiesArticle

Auteurs : Devlin Mallory ORCID1

Finite $F$-representation type is an important notion in characteristic-$p$ commutative algebra, but explicit examples of varieties with or without this property are few. We prove that a large class of homogeneous coordinate rings in positive characteristic will fail to have finite $F$-representation type. To do so, we prove a connection between differential operators on the homogeneous coordinate ring of $X$ and the existence of global sections of a twist of $(\mathrm{Sym}^m \Omega_X)^\vee$. By results of Takagi and Takahashi, this allows us to rule out FFRT for coordinate rings of varieties with $(\mathrm{Sym}^m \Omega_X)^\vee$ not ``positive''. By using results positivity and semistability conditions for the (co)tangent sheaves, we show that several classes of varieties fail to have finite $F$-representation type, including abelian varieties, most Calabi--Yau varieties, and complete intersections of general type. Our work also provides examples of the structure of the ring of differential operators for non-$F$-pure varieties, which to this point have largely been unexplored.


Volume : Volume 7
Publié le : 6 décembre 2023
Accepté le : 2 août 2023
Soumis le : 30 janvier 2023
Mots-clés : Mathematics - Commutative Algebra,Mathematics - Algebraic Geometry,13A35 (Primary) 13N10, 14F10 (Secondary)
Financement :
    Source : OpenAIRE Graph
  • RTG: Algebra, Geometry, and Topology at the University of Utah; Financeur: National Science Foundation; Code: 1840190

Statistiques de consultation

Cette page a été consultée 198 fois.
Le PDF de cet article a été téléchargé 166 fois.