Daniel Smolkin - Diagonal F-splitting and Symbolic Powers of Ideals

epiga:9918 - Épijournal de Géométrie Algébrique, 22 janvier 2024, Volume 8 - https://doi.org/10.46298/epiga.2023.9918
Diagonal F-splitting and Symbolic Powers of IdealsArticle

Auteurs : Daniel Smolkin

    Let $J$ be any ideal in a strongly $F$-regular, diagonally $F$-split ring $R$ essentially of finite type over an $F$-finite field. We show that $J^{s+t} \subseteq \tau(J^{s - \epsilon}) \tau(J^{t-\epsilon})$ for all $s, t, \epsilon > 0$ for which the formula makes sense. We use this to show a number of novel containments between symbolic and ordinary powers of prime ideals in this setting, which includes all determinantal rings and a large class of toric rings in positive characteristic. In particular, we show that $P^{(2hn)} \subseteq P^n$ for all prime ideals $P$ of height $h$ in such rings.


    Volume : Volume 8
    Publié le : 22 janvier 2024
    Accepté le : 11 octobre 2023
    Soumis le : 15 août 2022
    Mots-clés : Mathematics - Commutative Algebra,Mathematics - Algebraic Geometry,13A15 (secondary), 13A35 (primary), 14B05

    Statistiques de consultation

    Cette page a été consultée 1487 fois.
    Le PDF de cet article a été téléchargé 1437 fois.