Ciro Ciliberto ; Thomas Dedieu - Extensions of curves with high degree with respect to the genus

epiga:11202 - Épijournal de Géométrie Algébrique, 9 juillet 2024, Volume spécial en l'honneur de Claire Voisin - https://doi.org/10.46298/epiga.2024.11202
Extensions of curves with high degree with respect to the genusArticle

Auteurs : Ciro Ciliberto ; Thomas Dedieu

    We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g>1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E.~Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension.


    Volume : Volume spécial en l'honneur de Claire Voisin
    Publié le : 9 juillet 2024
    Accepté le : 27 janvier 2024
    Soumis le : 17 avril 2023
    Mots-clés : Mathematics - Algebraic Geometry

    Statistiques de consultation

    Cette page a été consultée 169 fois.
    Le PDF de cet article a été téléchargé 86 fois.