Thomas J. Haines - Cellular pavings of fibers of convolution morphisms

epiga:12352 - Épijournal de Géométrie Algébrique, 16 mai 2025, Volume 9 - https://doi.org/10.46298/epiga.2024.12352
Cellular pavings of fibers of convolution morphismsArticle

Auteurs : Thomas J. Haines

    This article proves, in the case of split groups over arbitrary fields, that all fibers of convolution morphisms attached to parahoric affine flag varieties are paved by products of affine lines and affine lines minus a point. This applies in particular to the affine Grassmannian and to the convolution morphisms in the context of the geometric Satake correspondence. The second part of the article extends these results over $\mathbb Z$. Those in turn relate to the recent work of Cass-van den Hove-Scholbach on the geometric Satake equivalence for integral motives, and provide some alternative proofs for some of their results.


    Volume : Volume 9
    Publié le : 16 mai 2025
    Accepté le : 24 septembre 2024
    Soumis le : 30 septembre 2023
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Representation Theory

    Statistiques de consultation

    Cette page a été consultée 120 fois.
    Le PDF de cet article a été téléchargé 82 fois.