Daniele Agostini ; Ignacio Barros ; Kuan-Wen Lai - On the irrationality of moduli spaces of projective hyperkähler manifolds

epiga:12999 - Épijournal de Géométrie Algébrique, 17 juin 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.12999
On the irrationality of moduli spaces of projective hyperkähler manifoldsArticle

Auteurs : Daniele Agostini ; Ignacio Barros ; Kuan-Wen Lai

    The aim of this paper is to estimate the irrationality of moduli spaces of hyperkähler manifolds of types K3$^{[n]}$, Kum$_{n}$, OG6, and OG10. We prove that the degrees of irrationality of these moduli spaces are bounded from above by a universal polynomial in the dimension and degree of the manifolds they parametrize. We also give a polynomial bound for the degrees of irrationality of moduli spaces of $(1,d)$-polarized abelian surfaces.


    Volume : Volume 9
    Publié le : 17 juin 2025
    Accepté le : 21 novembre 2024
    Soumis le : 5 février 2024
    Mots-clés : Mathematics - Algebraic Geometry