On the irrationality of moduli spaces of projective hyperkähler
manifoldsArticle
Auteurs : Daniele Agostini ; Ignacio Barros ; Kuan-Wen Lai
NULL##NULL##NULL
Daniele Agostini;Ignacio Barros;Kuan-Wen Lai
The aim of this paper is to estimate the irrationality of moduli spaces of hyperkähler manifolds of types K3$^{[n]}$, Kum$_{n}$, OG6, and OG10. We prove that the degrees of irrationality of these moduli spaces are bounded from above by a universal polynomial in the dimension and degree of the manifolds they parametrize. We also give a polynomial bound for the degrees of irrationality of moduli spaces of $(1,d)$-polarized abelian surfaces.
Volume : Volume 9
Publié le : 17 juin 2025
Accepté le : 21 novembre 2024
Soumis le : 5 février 2024
Mots-clés : Mathematics - Algebraic Geometry
Financement :
Source : OpenAIRE Graph- Deep Drug Discovery and Deployment; Financeur: Fundação para a Ciência e a Tecnologia, I.P.; Code: PTDC/CCI-BIO/29266/2017
- Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties; Financeur: European Commission; Code: 854361