Andrey Soldatenkov ; Misha Verbitsky - The abundance and SYZ conjectures in families of hyperkahler manifolds

epiga:14370 - Épijournal de Géométrie Algébrique, 9 décembre 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.14370
The abundance and SYZ conjectures in families of hyperkahler manifoldsArticle

Auteurs : Andrey Soldatenkov ; Misha Verbitsky

    Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with $c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We prove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with $L'$ semiample. We introduce a version of the Teichmuller space that parametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global Torelli theorem for such Teichmuller spaces and use it to deduce the deformation invariance of semiampleness.

    17 pages, 2 figures, published version


    Volume : Volume 9
    Publié le : 9 décembre 2025
    Accepté le : 13 juillet 2025
    Soumis le : 30 septembre 2024
    Mots-clés : Algebraic Geometry, Differential Geometry, 53C26, 14J42