János Kollár - Conic bundles that are not birational to numerical Calabi--Yau pairs

epiga:1518 - Épijournal de Géométrie Algébrique, 1 septembre 2017, Volume 1 - https://doi.org/10.46298/epiga.2017.volume1.1518
Conic bundles that are not birational to numerical Calabi--Yau pairsArticle

Auteurs : János Kollár

    Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective. We also give such examples for 2-dimensional conic bundles defined over a number field.


    Volume : Volume 1
    Publié le : 1 septembre 2017
    Accepté le : 30 janvier 2017
    Soumis le : 14 mars 2017
    Mots-clés : Mathematics - Algebraic Geometry,14M22, 14J45, 14J20 (Primary), 14J32, 14E05 (Secondary)
    Financement :
      Source : OpenAIRE Graph
    • Families of varieties of general type; Financeur: National Science Foundation; Code: 1362960

    3 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 980 fois.
    Le PDF de cet article a été téléchargé 1126 fois.