Kollár, János - Conic bundles that are not birational to numerical Calabi--Yau pairs

epiga:3189 - Épijournal de Géométrie Algébrique, 1 septembre 2017, Volume 1
Conic bundles that are not birational to numerical Calabi--Yau pairs

Auteurs : Kollár, János

Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective. We also give such examples for 2-dimensional conic bundles defined over a number field.


Source : oai:arXiv.org:1605.04763
Volume : Volume 1
Publié le : 1 septembre 2017
Déposé le : 14 mars 2017
Mots-clés : Mathematics - Algebraic Geometry,14M22, 14J45, 14J20 (Primary), 14J32, 14E05 (Secondary)


Exporter

Partager

Statistiques de consultation

Cette page a été consultée 203 fois.
Le PDF de cet article a été téléchargé 89 fois.