Brian Lehmann ; Jian Xiao - Correspondences between convex geometry and complex geometry

epiga:2038 - Épijournal de Géométrie Algébrique, 1 septembre 2017, Volume 1 - https://doi.org/10.46298/epiga.2017.volume1.2038
Correspondences between convex geometry and complex geometryArticle

Auteurs : Brian Lehmann ORCID; Jian Xiao

    We present several analogies between convex geometry and the theory of holomorphic line bundles on smooth projective varieties or Kähler manifolds. We study the relation between positive products and mixed volumes. We define and study a Blaschke addition for divisor classes and mixed divisor classes, and prove new geometric inequalities for divisor classes. We also reinterpret several classical convex geometry results in the context of algebraic geometry: the Alexandrov body construction is the convex geometry version of divisorial Zariski decomposition; Minkowski's existence theorem is the convex geometry version of the duality between the pseudo-effective cone of divisors and the movable cone of curves.


    Volume : Volume 1
    Publié le : 1 septembre 2017
    Accepté le : 10 juillet 2017
    Soumis le : 10 juillet 2017
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Complex Variables

    4 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 1048 fois.
    Le PDF de cet article a été téléchargé 733 fois.