Wonderful compactifications of Bruhat-Tits buildingsArticle
Authors: Bertrand Remy 1; Amaury Thuillier 2; Annette Werner 3
NULL##NULL##NULL
Bertrand Remy;Amaury Thuillier;Annette Werner
1 Centre de Mathématiques Laurent Schwartz
2 Algèbre, géométrie, logique
3 Institute for Mathematics [Frankfurt ]
Given a split semisimple group over a local field, we consider the maximal
Satake-Berkovich compactification of the corresponding Euclidean building. We
prove that it can be equivariantly identified with the compactification which
we get by embedding the building in the Berkovich analytic space associated to
the wonderful compactification of the group. The construction of this embedding
map is achieved over a general non-archimedean complete ground field. The
relationship between the structures at infinity, one coming from strata of the
wonderful compactification and the other from Bruhat-Tits buildings, is also
investigated.
Méthodes géométriques en théorie de Lie; Funder: French National Research Agency (ANR); Code: ANR-15-CE40-0012
References
1 Document citing this article
Bertrand Rémy;Annette Werner;Amaury Thuillier, 2022, An Intrinsic Characterization of Bruhat–Tits Buildings Inside Analytic Groups, HAL (Le Centre pour la Communication Scientifique Directe), 72, none, 10.1307/mmj/20217220, https://hal.archives-ouvertes.fr/hal-03343671.