Stable rationality of higher dimensional conic bundlesArticle
Auteurs : Hamid Ahmadinezhad ; Takuzo Okada
NULL##NULL
Hamid Ahmadinezhad;Takuzo Okada
We prove that a very general nonsingular conic bundle
$X\rightarrow\mathbb{P}^{n-1}$ embedded in a projective vector bundle of rank
$3$ over $\mathbb{P}^{n-1}$ is not stably rational if the anti-canonical
divisor of $X$ is not ample and $n\geq 3$.