Stable rationality of higher dimensional conic bundles
Authors: Hamid Ahmadinezhad ; Takuzo Okada
NULL##NULL
Hamid Ahmadinezhad;Takuzo Okada
We prove that a very general nonsingular conic bundle
$X\rightarrow\mathbb{P}^{n-1}$ embedded in a projective vector bundle of rank
$3$ over $\mathbb{P}^{n-1}$ is not stably rational if the anti-canonical
divisor of $X$ is not ample and $n\geq 3$.
Okada, Takuzo, 2021, Stable Rationality Of Index One Fano Hypersurfaces Containing A Linear Space, European Journal Of Mathematics, 10.1007/s40879-021-00513-5.
Pukhlikov, A. V., 2018, Birational Geometry Of Singular Fano Hypersurfaces Of Index Two, Manuscripta Mathematica, 161, 1-2, pp. 161-203, 10.1007/s00229-018-1075-3.
Schreieder, Stefan, 2019, On The Rationality Problem For Quadric Bundles, Duke Mathematical Journal, 168, 2, 10.1215/00127094-2018-0041.