A characterization of finite vector bundles on Gauduchon astheno-Kahler
manifoldsArticle
Auteurs : Indranil Biswas ; Vamsi Pritham Pingali
NULL##NULL
Indranil Biswas;Vamsi Pritham Pingali
A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.
Volume : Volume 2
Publié le : 21 septembre 2018
Accepté le : 16 août 2018
Soumis le : 16 janvier 2018
Mots-clés : Mathematics - Algebraic Geometry, Mathematics - Differential Geometry, 32L10, 53C55, 14D21