Chern classes of automorphic vector bundles, IIArticle
Auteurs : Hélène Esnault ; Michael Harris
NULL##NULL
Hélène Esnault;Michael Harris
We prove that the $\ell$-adic Chern classes of canonical extensions of automorphic vector bundles, over toroidal compactifications of Shimura varieties of Hodge type over $\bar{ \mathbb{Q}}_p$, descend to classes in the $\ell$-adic cohomology of the minimal compactifications. These are invariant under the Galois group of the $p$-adic field above which the variety and the bundle are defined.
Comment: 28 pages
Volume : Volume 3
Publié le : 24 octobre 2019
Accepté le : 24 octobre 2019
Soumis le : 26 janvier 2018
Mots-clés : Mathematics - Algebraic Geometry
Financement :
Source : OpenAIRE Graph- Arithmetic of automorphic motives; Financeur: European Commission; Code: 290766
- Langlands Correspondences and Motivic L-Functions; Financeur: National Science Foundation; Code: 1701651
- Automorphic Galois Representations and Automorphic L-functions; Financeur: National Science Foundation; Code: 1404769