Michael Wibmer - Free Proalgebraic Groups

epiga:5733 - Épijournal de Géométrie Algébrique, 19 février 2020, Volume 4 - https://doi.org/10.46298/epiga.2020.volume4.5733
Free Proalgebraic GroupsArticle

Auteurs : Michael Wibmer

    Replacing finite groups by linear algebraic groups, we study an algebraic-geometric counterpart of the theory of free profinite groups. In particular, we introduce free proalgebraic groups and characterize them in terms of embedding problems. The main motivation for this endeavor is a differential analog of a conjecture of Shafarevic.


    Volume : Volume 4
    Publié le : 19 février 2020
    Accepté le : 19 février 2020
    Soumis le : 31 août 2019
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Group Theory,14L15, 14L17, 34M50, 12H05
    Financement :
      Source : OpenAIRE Graph
    • FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications; Financeur: National Science Foundation; Code: 1760212
    • FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications; Financeur: National Science Foundation; Code: 1760448
    • FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications; Financeur: National Science Foundation; Code: 1760413
    • Galois groups of differential equations; Financeur: National Science Foundation; Code: M 2582

    3 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 731 fois.
    Le PDF de cet article a été téléchargé 599 fois.