Marco Antei ; Michel Emsalem ; Carlo Gasbarri - Sur l'existence du schéma en groupes fondametal

epiga:5436 - Épijournal de Géométrie Algébrique, June 8, 2020, Volume 4 -
Sur l'existence du schéma en groupes fondametalArticle

Authors: Marco Antei ORCID; Michel Emsalem ; Carlo Gasbarri

    Let $S$ be a Dedekind scheme, $X$ a connected $S$-scheme locally of finite type and $x\in X(S)$ a section. The aim of the present paper is to establish the existence of the fundamental group scheme of $X$, when $X$ has reduced fibers or when $X$ is normal. We also prove the existence of a group scheme, that we will call the quasi-finite fundamental group scheme of $X$ at $x$, which classifies all the quasi-finite torsors over $X$, pointed over $x$. We define Galois torsors, which play in this context a role similar to the one of Galois covers in the theory of étale fundamental group.

    Volume: Volume 4
    Published on: June 8, 2020
    Accepted on: April 1, 2020
    Submitted on: May 7, 2019
    Keywords: Mathematics - Algebraic Geometry,Mathematics - Number Theory,14G99, 14L15, 14L30, 11G99
      Source : OpenAIRE Graph
    • Torsors, Vector Bundles and Fundamental Group Scheme; Funder: French National Research Agency (ANR); Code: ANR-13-PDOC-0015

    2 Documents citing this article

    Consultation statistics

    This page has been seen 573 times.
    This article's PDF has been downloaded 433 times.