Rahul Pandharipande ; Johannes Schmitt - Zero cycles on the moduli space of curves

epiga:5601 - Épijournal de Géométrie Algébrique, 3 septembre 2020, Volume 4 - https://doi.org/10.46298/epiga.2020.volume4.5601
Zero cycles on the moduli space of curvesArticle

Auteurs : Rahul Pandharipande ; Johannes Schmitt ORCID

    While the Chow groups of 0-dimensional cycles on the moduli spaces of Deligne-Mumford stable pointed curves can be very complicated, the span of the 0-dimensional tautological cycles is always of rank 1. The question of whether a given moduli point [C,p_1,...,p_n] determines a tautological 0-cycle is subtle. Our main results address the question for curves on rational and K3 surfaces. If C is a nonsingular curve on a nonsingular rational surface of positive degree with respect to the anticanonical class, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the virtual dimension in Gromov-Witten theory of the moduli space of stable maps. If C is a nonsingular curve on a K3 surface, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the genus of C and every marking is a Beauville-Voisin point. The latter result provides a connection between the rank 1 tautological 0-cycles on the moduli of curves and the rank 1 tautological 0-cycles on K3 surfaces. Several further results related to tautological 0-cycles on the moduli spaces of curves are proven. Many open questions concerning the moduli points of curves on other surfaces (Abelian, Enriques, general type) are discussed.


    Volume : Volume 4
    Publié le : 3 septembre 2020
    Accepté le : 3 septembre 2020
    Soumis le : 26 juin 2019
    Mots-clés : Mathematics - Algebraic Geometry,14C25, 14H10
    Financement :
      Source : OpenAIRE Graph
    • Moduli, Algebraic Cycles, and Invariants; Financeur: European Commission; Code: 786580

    3 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 576 fois.
    Le PDF de cet article a été téléchargé 393 fois.