Nicolas Tholozan ; Jérémy Toulisse - Compact connected components in relative character varieties of punctured spheres

epiga:5894 - Épijournal de Géométrie Algébrique, 19 avril 2021, Volume 5 - https://doi.org/10.46298/epiga.2021.volume5.5894
Compact connected components in relative character varieties of punctured spheresArticle

Auteurs : Nicolas Tholozan ; Jérémy Toulisse

    We prove that some relative character varieties of the fundamental group of a punctured sphere into the Hermitian Lie groups $\mathrm{SU}(p,q)$ admit compact connected components. The representations in these components have several counter-intuitive properties. For instance, the image of any simple closed curve is an elliptic element. These results extend a recent work of Deroin and the first author, which treated the case of $\textrm{PU}(1,1) = \mathrm{PSL}(2,\mathbb{R})$. Our proof relies on the non-Abelian Hodge correspondance between relative character varieties and parabolic Higgs bundles. The examples we construct admit a rather explicit description as projective varieties obtained via Geometric Invariant Theory.


    Volume : Volume 5
    Publié le : 19 avril 2021
    Accepté le : 9 février 2021
    Soumis le : 5 novembre 2019
    Mots-clés : Mathematics - Geometric Topology,Mathematics - Algebraic Geometry
    Financement :
      Source : OpenAIRE Graph
    • RNMS: Geometric Structures and Representation Varieties; Financeur: National Science Foundation; Code: 1107367
    • RNMS: Geometric structures and representation varieties; Financeur: National Science Foundation; Code: 1107452
    • RNMS: Geometric Structures and Representation Varieties; Financeur: National Science Foundation; Code: 1107263

    1 Document citant cet article

    Statistiques de consultation

    Cette page a été consultée 895 fois.
    Le PDF de cet article a été téléchargé 502 fois.