Yoshinori Hashimoto ; Julien Keller - Quot-scheme limit of Fubini-Study metrics and Donaldson's functional for vector bundles

epiga:6577 - Épijournal de Géométrie Algébrique, 3 janvier 2022, Volume 5 - https://doi.org/10.46298/epiga.2022.6577
Quot-scheme limit of Fubini-Study metrics and Donaldson's functional for vector bundlesArticle

Auteurs : Yoshinori Hashimoto ; Julien Keller

    For a holomorphic vector bundle $E$ over a polarised Kähler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. In particular, we provide an explicit estimate which proves that Donaldson's functional is coercive on the set of Fubini-Study metrics if $E$ is slope stable, and give a new proof of Hermitian-Einstein metrics implying slope stability.


    Volume : Volume 5
    Publié le : 3 janvier 2022
    Accepté le : 3 janvier 2022
    Soumis le : 18 juin 2020
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Complex Variables,Mathematics - Differential Geometry,14J60 (Primary) 14L24, 53C07 (Secondary)
    Financement :
      Source : OpenAIRE Graph
    • Extremal metrics and relative K-stability; Financeur: French National Research Agency (ANR); Code: ANR-14-CE25-0010
    • ARCHIMEDE / Mathématiques; Financeur: French National Research Agency (ANR); Code: ANR-11-LABX-0033

    1 Document citant cet article

    Statistiques de consultation

    Cette page a été consultée 525 fois.
    Le PDF de cet article a été téléchargé 415 fois.