Quot-scheme limit of Fubini-Study metrics and Donaldson's functional for
vector bundlesArticle
Auteurs : Yoshinori Hashimoto ; Julien Keller
NULL##NULL
Yoshinori Hashimoto;Julien Keller
For a holomorphic vector bundle $E$ over a polarised Kähler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. In particular, we provide an explicit estimate which proves that Donaldson's functional is coercive on the set of Fubini-Study metrics if $E$ is slope stable, and give a new proof of Hermitian-Einstein metrics implying slope stability.
Comment: 38 pages. Final version
Volume : Volume 5
Publié le : 3 janvier 2022
Accepté le : 3 janvier 2022
Soumis le : 18 juin 2020
Mots-clés : Mathematics - Algebraic Geometry, Mathematics - Complex Variables, Mathematics - Differential Geometry, 14J60 (Primary) 14L24, 53C07 (Secondary)
Financement :
Source : OpenAIRE Graph- Extremal metrics and relative K-stability; Financeur: French National Research Agency (ANR); Code: ANR-14-CE25-0010
- Extremal metrics and relative K-stability; Financeur: French National Research Agency (ANR); Code: ANR-11-LABX-0033