Javier Carvajal-Rojas - Finite torsors over strongly $F$-regular singularities

epiga:7532 - Épijournal de Géométrie Algébrique, 1 mars 2022, Volume 6 - https://doi.org/10.46298/epiga.2022.7532
Finite torsors over strongly $F$-regular singularitiesArticle

Auteurs : Javier Carvajal-Rojas ORCID

    We investigate finite torsors over big opens of spectra of strongly $F$-regular germs that do not extend to torsors over the whole spectrum. Let $(R,\mathfrak{m},k)$ be a strongly $F$-regular $k$-germ where $k$ is an algebraically closed field of characteristic $p>0$. We prove the existence of a finite local cover $R \subset R^{\star}$ so that $R^{\star}$ is a strongly $F$-regular $k$-germ and: for all finite algebraic groups $G/k$ with solvable neutral component, every $G$-torsor over a big open of $\mathrm{Spec} R^{\star}$ extends to a $G$-torsor everywhere. To achieve this, we obtain a generalized transformation rule for the $F$-signature under finite local extensions. Such formula is used to show that that the torsion of $\mathrm{Cl} R$ is bounded by $1/s(R)$. By taking cones, we conclude that the Picard group of globally $F$-regular varieties is torsion-free. Likewise, it shows that canonical covers of $\mathbb{Q}$-Gorenstein strongly $F$-regular singularities are strongly $F$-regular.


    Volume : Volume 6
    Publié le : 1 mars 2022
    Accepté le : 1 mars 2022
    Soumis le : 1 juin 2021
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Commutative Algebra,13A35, 13A50, 14B05, 14L15, 14L30, 16T05
    Financement :
      Source : OpenAIRE Graph
    • FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic; Financeur: National Science Foundation; Code: 1265261

    5 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 1378 fois.
    Le PDF de cet article a été téléchargé 1235 fois.