Density of Arithmetic Representations of Function FieldsArticle
Auteurs : Hélène Esnault ; Moritz Kerz
NULL##NULL
Hélène Esnault;Moritz Kerz
We propose a conjecture on the density of arithmetic points in the deformation space of representations of the étale fundamental group in positive characteristic. This? conjecture has applications to étale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.
Comment: 18 pages
Volume : Volume 6
Publié le : 7 mars 2022
Accepté le : 7 mars 2022
Soumis le : 16 juin 2020
Mots-clés : Mathematics - Algebraic Geometry, Mathematics - Number Theory, 11G99, 14G99
Financement :
Source : OpenAIRE Graph- Higher Invariants – Interactions between Arithmetic Geometry and Global Analysis; Financeur: Deutsche Forschungsgemeinschaft; Code: 224262486/SFB 1085