An atlas of K3 surfaces with finite automorphism groupArticle
Auteurs : Xavier Roulleau
NULL
Xavier Roulleau
We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.
Comment: 95 pages, 80 figures, 1 Table
Volume : Volume 6
Publié le : 28 novembre 2022
Accepté le : 21 juin 2022
Soumis le : 17 avril 2020
Mots-clés : Mathematics - Algebraic Geometry, 14J28
Financement :
Source : OpenAIRE Graph- Deep Drug Discovery and Deployment; Financeur: Fundação para a Ciência e a Tecnologia, I.P.; Code: PTDC/CCI-BIO/29266/2017