Erwan Brugallé ; Florent Schaffhauser - Maximality of moduli spaces of vector bundles on curves

epiga:8793 - Épijournal de Géométrie Algébrique, 6 janvier 2023, Volume 6 - https://doi.org/10.46298/epiga.2023.8793
Maximality of moduli spaces of vector bundles on curvesArticle

Auteurs : Erwan Brugallé ; Florent Schaffhauser

    We prove that moduli spaces of semistable vector bundles of coprime rank and degree over a non-singular real projective curve are maximal real algebraic varieties if and only if the base curve itself is maximal. This provides a new family of maximal varieties, with members of arbitrarily large dimension. We prove the result by comparing the Betti numbers of the real locus to the Hodge numbers of the complex locus and showing that moduli spaces of vector bundles over a maximal curve actually satisfy a property which is stronger than maximality and that we call Hodge-expressivity. We also give a brief account on other varieties for which this property was already known.


    Volume : Volume 6
    Publié le : 6 janvier 2023
    Accepté le : 6 janvier 2023
    Soumis le : 2 décembre 2021
    Mots-clés : Mathematics - Algebraic Geometry,14P25, 14H60

    Statistiques de consultation

    Cette page a été consultée 339 fois.
    Le PDF de cet article a été téléchargé 263 fois.