We prove a general criterion which ensures that a fractional Calabi--Yau category of dimension $\leq 2$ admits a unique Serre-invariant stability condition, up to the action of the universal cover of $\text{GL}^+_2(\mathbb{R})$. We apply this result to the Kuznetsov component $\text{Ku}(X)$ of a cubic threefold $X$. In particular, we show that all the known stability conditions on $\text{Ku}(X)$ are invariant with respect to the action of the Serre functor and thus lie in the same orbit with respect to the action of the universal cover of $\text{GL}^+_2(\mathbb{R})$. As an application, we show that the moduli space of Ulrich bundles of rank $\geq 2$ on $X$ is irreducible, answering a question asked by Lahoz, Macrì and Stellari.