Soheyla Feyzbakhsh ; Laura Pertusi - Serre-invariant stability conditions and Ulrich bundles on cubic threefolds

epiga:9611 - Épijournal de Géométrie Algébrique, 25 janvier 2023, Volume 7 - https://doi.org/10.46298/epiga.2022.9611
Serre-invariant stability conditions and Ulrich bundles on cubic threefoldsArticle

Auteurs : Soheyla Feyzbakhsh ; Laura Pertusi ORCID

    We prove a general criterion which ensures that a fractional Calabi--Yau category of dimension $\leq 2$ admits a unique Serre-invariant stability condition, up to the action of the universal cover of $\text{GL}^+_2(\mathbb{R})$. We apply this result to the Kuznetsov component $\text{Ku}(X)$ of a cubic threefold $X$. In particular, we show that all the known stability conditions on $\text{Ku}(X)$ are invariant with respect to the action of the Serre functor and thus lie in the same orbit with respect to the action of the universal cover of $\text{GL}^+_2(\mathbb{R})$. As an application, we show that the moduli space of Ulrich bundles of rank $\geq 2$ on $X$ is irreducible, answering a question asked by Lahoz, Macrì and Stellari.


    Volume : Volume 7
    Publié le : 25 janvier 2023
    Accepté le : 16 septembre 2022
    Soumis le : 25 mai 2022
    Mots-clés : Mathematics - Algebraic Geometry
    Financement :
      Source : OpenAIRE Graph
    • Derived categories, stability conditions and geometric applications.; Financeur: UK Research and Innovation; Code: EP/T018658/1

    Publications

    A une évaluation
    • 1 zbMATH Open

    1 Document citant cet article

    Statistiques de consultation

    Cette page a été consultée 736 fois.
    Le PDF de cet article a été téléchargé 659 fois.