Soheyla Feyzbakhsh ; Richard P. Thomas - Curve counting and S-duality

epiga:9818 - Épijournal de Géométrie Algébrique, 12 mai 2023, Volume 7 - https://doi.org/10.46298/epiga.2023.volume7.9818
Curve counting and S-dualityArticle

Auteurs : Soheyla Feyzbakhsh ORCID1; Richard P. Thomas ORCID1

We work on a projective threefold $X$ which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as $\mathbb P^3$ or the quintic threefold. We prove certain moduli spaces of 2-dimensional torsion sheaves on $X$ are smooth bundles over Hilbert schemes of ideal sheaves of curves and points in $X$. When $X$ is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. These latter invariants are predicted to have modular properties which we discuss from the point of view of S-duality and Noether-Lefschetz theory.


Volume : Volume 7
Publié le : 12 mai 2023
Accepté le : 7 février 2023
Soumis le : 21 juillet 2022
Mots-clés : Mathematics - Algebraic Geometry,High Energy Physics - Theory,14N35, 14D20, 14J60, 14F05
Financement :
    Source : OpenAIRE Graph
  • Vafa-Witten invariants of projective surfaces; Financeur: UK Research and Innovation; Code: EP/R013349/1
  • Derived categories, stability conditions and geometric applications.; Financeur: UK Research and Innovation; Code: EP/T018658/1

Publications

A une évaluation
  • 1 zbMATH Open

Statistiques de consultation

Cette page a été consultée 506 fois.
Le PDF de cet article a été téléchargé 609 fois.