We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that $G$ acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.
Comment: 19 pages, comments are welcome; v2: Eliminated an assumption in the main result, expanded applications section; v3: Final version