Dimitri Markushevich ; Anne Moreau - Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions

epiga:11511 - Épijournal de Géométrie Algébrique, 11 juillet 2024, Volume 8 - https://doi.org/10.46298/epiga.2024.11511
Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functionsArticle

Auteurs : Dimitri Markushevich ; Anne Moreau

    Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block.


    Volume : Volume 8
    Publié le : 11 juillet 2024
    Accepté le : 7 février 2024
    Soumis le : 28 juin 2023
    Mots-clés : Mathematics - Algebraic Geometry,14B05, 11F22, 20D06, 14H45, 20H15
    Financement :
      Source : OpenAIRE Graph
    • Centre Européen pour les Mathématiques, la Physique et leurs Interactions; Financeur: French National Research Agency (ANR); Code: ANR-11-LABX-0007
    • Geometrical methods in Lie theory; Financeur: French National Research Agency (ANR); Code: ANR-15-CE40-0012

    Statistiques de consultation

    Cette page a été consultée 740 fois.
    Le PDF de cet article a été téléchargé 695 fois.