Nils Bruin ; Nathan Ilten ; Zhe Xu - Local Euler characteristics of $A_n$-singularities and their application to hyperbolicity

epiga:12665 - Épijournal de Géométrie Algébrique, 6 février 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.12665
Local Euler characteristics of $A_n$-singularities and their application to hyperbolicityArticle

Auteurs : Nils Bruin ; Nathan Ilten ; Zhe Xu

    Wahl's local Euler characteristic measures the local contributions of a singularity to the usual Euler characteristic of a sheaf. Using tools from toric geometry, we study the local Euler characteristic of sheaves of symmetric differentials for isolated surface singularities of type $A_n$. We prove an explicit formula for the local Euler characteristic of the $m$th symmetric power of the cotangent bundle; this is a quasi-polynomial in $m$ of period $n+1$. We also express the components of the local Euler characteristic as a count of lattice points in a non-convex polyhedron, again showing it is a quasi-polynomial. We apply our computations to obtain new examples of algebraic quasi-hyperbolic surfaces in $\mathbb{P}^3$ of low degree. We show that an explicit family of surfaces with many singularities constructed by Labs has no genus $0$ curves for the members of degree at least $8$ and no curves of genus $0$ or $1$ for degree at least $10$.


    Volume : Volume 9
    Publié le : 6 février 2025
    Accepté le : 24 mai 2024
    Soumis le : 7 décembre 2023
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - Number Theory,Primary 14J17, 14M25, Secondary 14F10, 52B20, 11G35

    Statistiques de consultation

    Cette page a été consultée 103 fois.
    Le PDF de cet article a été téléchargé 60 fois.