Clément Dupont ; Javier Fresán - A construction of the polylogarithm motive

epiga:11558 - Épijournal de Géométrie Algébrique, 23 février 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.11558
A construction of the polylogarithm motiveArticle

Auteurs : Clément Dupont ; Javier Fresán

    Classical polylogarithms give rise to a variation of mixed Hodge-Tate structures on the punctured projective line $S=\mathbb{P}^1\setminus \{0, 1, \infty\}$, which is an extension of the symmetric power of the Kummer variation by a trivial variation. By results of Beilinson-Deligne, Huber-Wildeshaus, and Ayoub, this polylogarithm variation has a lift to the category of mixed Tate motives over $S$, whose existence is proved by computing the corresponding space of extensions in both the motivic and the Hodge settings. In this paper, we construct the polylogarithm motive as an explicit relative cohomology motive, namely that of the complement of the hypersurface $\{1-zt_1\cdots t_n=0\}$ in affine space $\mathbb{A}^n_S$ relative to the union of the hyperplanes $\{t_i=0\}$ and $\{t_i=1\}$.


    Volume : Volume 9
    Publié le : 23 février 2025
    Accepté le : 9 juin 2024
    Soumis le : 8 juillet 2023
    Mots-clés : Mathematics - Algebraic Geometry,Mathematics - K-Theory and Homology,Mathematics - Number Theory