Kawamata-Miyaoka type inequality for canonical $\mathbb Q$-Fano
varieties II: Terminal $\mathbb Q$-Fano threefoldsArticle
Auteurs : Haidong Liu ; Jie Liu
NULL##NULL
Haidong Liu;Jie Liu
We prove an optimal Kawamata-Miyaoka type inequality for terminal $\mathbb
Q$-Fano threefolds with Fano index at least $3$. As an application, we obtain
that any terminal $\mathbb Q$-Fano threefold $X$ satisfies the following
Kawamata-Miyaoka type inequality \[ c_1(X)^3 < 3c_2(X)c_1(X). \]