Xiaowen Hu - On singular Hilbert schemes of points: Local structures and tautological sheaves

epiga:12827 - Épijournal de Géométrie Algébrique, 28 août 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.12827
On singular Hilbert schemes of points: Local structures and tautological sheavesArticle

Auteurs : Xiaowen Hu

    We show an intrinsic version of Thomason's fixed-point theorem. Then we determine the local structure of the Hilbert scheme of at most $7$ points in $\mathbb{A}^3$. In particular, we show that in these cases, the points with the same extra dimension have the same singularity type. Using these results, we compute the equivariant Hilbert functions at the singularities and verify a conjecture of Zhou on the Euler characteristics of tautological sheaves on Hilbert schemes of points on $\mathbb{P}^3$ for at most $6$ points.

    An error in Lemma 5.1 is corrected, and the proof of this lemma is improved


    Volume : Volume 9
    Publié le : 28 août 2025
    Accepté le : 7 février 2025
    Soumis le : 5 janvier 2024
    Mots-clés : Algebraic Geometry, Commutative Algebra, 14C05, 14C40, 13D40

    Statistiques de consultation

    Cette page a été consultée 214 fois.
    Le PDF de cet article a été téléchargé 49 fois.