Thomas Bitoun ; Eamon Quinlan-Gallego - Bernstein-Sato theory modulo $p^m$

epiga:14739 - Épijournal de Géométrie Algébrique, 29 septembre 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.14739
Bernstein-Sato theory modulo $p^m$Article

Auteurs : Thomas Bitoun ; Eamon Quinlan-Gallego

    For fixed prime integer $p > 0$ we develop a notion of Bernstein-Sato polynomial for polynomials with $\mathbb{Z} / p^m$-coefficients, compatible with existing theory in the case $m = 1$. We show that the ``roots" of such polynomials are rational and we show that the negative roots agree with those of the mod-$p$ reduction. We give examples to show that, surprisingly, roots may be positive in this context. Moreover, our construction allows us to define a notion of ``strength" for roots by measuring $p$-torsion, and we show that ``strong" roots give rise to roots in characteristic zero through mod-$p$ reduction.

    Comments welcome. v3: final version. v2: fixed typos, small changes in notation, and additional example following suggestions from the referee


    Volume : Volume 9
    Publié le : 29 septembre 2025
    Accepté le : 24 mars 2025
    Soumis le : 13 novembre 2024
    Mots-clés : Commutative Algebra, Algebraic Geometry, Number Theory