Ryosuke Ooe - F-characteristic cycle of a rank one sheaf on an arithmetic surface

epiga:13168 - Épijournal de Géométrie Algébrique, 15 octobre 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.13168
F-characteristic cycle of a rank one sheaf on an arithmetic surfaceArticle

Auteurs : Ryosuke Ooe

    We prove the rationality of the characteristic form for a degree one character of the Galois group of an abelian extension of henselian discrete valuation fields. We prove the integrality of the characteristic form for a rank one sheaf on a regular excellent scheme. These properties are shown by reducing to the corresponding properties of the refined Swan conductor proved by Kato. We define the F-characteristic cycle of a rank one sheaf on an arithmetic surface as a cycle on the FW-cotangent bundle using the characteristic form on the basis of the computation of the characteristic cycle in the equal characteristic case by Yatagawa. The rationality and the integrality of the characteristic form are necessary for the definition of the F-characteristic cycle. We prove the intersection of the F-characteristic cycle with the 0-section computes the Swan conductor of cohomology of the generic fiber.


    Volume : Volume 9
    Publié le : 15 octobre 2025
    Accepté le : 30 avril 2025
    Soumis le : 4 mars 2024
    Mots-clés : Algebraic Geometry, Number Theory, 14F20, 11S15

    Statistiques de consultation

    Cette page a été consultée 28 fois.
    Le PDF de cet article a été téléchargé 12 fois.