Ljudmila Kamenova ; Christian Lehn - Non-hyperbolicity of holomorphic symplectic varieties

epiga:11015 - Épijournal de Géométrie Algébrique, 14 novembre 2025, Volume 9 - https://doi.org/10.46298/epiga.2025.11015
Non-hyperbolicity of holomorphic symplectic varietiesArticle

Auteurs : Ljudmila Kamenova ; Christian Lehn

    We prove non-hyperbolicity of primitive symplectic varieties with $b_2 \geq 5$ that satisfy the rational SYZ conjecture. If in addition $b_2 \geq 7$, we establish that the Kobayashi pseudometric vanishes identically. This in particular applies to all currently known examples of irreducible symplectic manifolds and thereby completes the results by Kamenova--Lu--Verbitsky. The key new contribution is that a projective primitive symplectic variety with a Lagrangian fibration has vanishing Kobayashi pseudometric. The proof uses ergodicity, birational contractions, and cycle spaces.

    26 pages. We reformatted the article in the style of the journal Epiga


    Volume : Volume 9
    Publié le : 14 novembre 2025
    Accepté le : 19 septembre 2024
    Soumis le : 2 mars 2023
    Mots-clés : Algebraic Geometry, Complex Variables, Differential Geometry, 32Q45, 53C26 (Primary), 14B07, 14J10, 32S45 (Secondary)

    Publications

    Référence