Bridgeland Stability Conditions on Fano ThreefoldsArticleAuteurs : Marcello Bernardara ; Emanuele Macrì

; Benjamin Schmidt ; Xiaolei Zhao

NULL##0000-0002-4881-6362##NULL##0000-0002-3162-0427
Marcello Bernardara;Emanuele Macrì;Benjamin Schmidt;Xiaolei Zhao
We show the existence of Bridgeland stability conditions on all Fano threefolds, by proving a modified version of a conjecture by Bayer, Toda, and the second author. The key technical ingredient is a strong Bogomolov inequality, proved recently by Chunyi Li. Additionally, we prove the original conjecture for some toric threefolds by using the toric Frobenius morphism.
Comment: 24 pages, 1 figure. Fifth version: Official version of the journal
Volume : Volume 1
Publié le : 1 septembre 2017
Accepté le : 23 mars 2017
Soumis le : 7 avril 2017
Mots-clés : Mathematics - Algebraic Geometry, 14F05 (Primary), 14J30, 18E30 (Secondary)
Financement :
Source : OpenAIRE Graph- Sheaves on higher dimensional varieties; Financeur: National Science Foundation; Code: 1523496
- Sheaves on higher dimensional varieties; Financeur: French National Research Agency (ANR); Code: ANR-11-IDEX-0002
- Sheaves on higher dimensional varieties; Financeur: French National Research Agency (ANR); Code: ANR-11-LABX-0040