Daniel Barlet - Finitude de l'espace des n-cycles pour un espace complexe (n − 2)-concave réduit

epiga:1521 - Épijournal de Géométrie Algébrique, 1 septembre 2017, Volume 1 - https://doi.org/10.46298/epiga.2017.volume1.1521
Finitude de l'espace des n-cycles pour un espace complexe (n − 2)-concave réduitArticle

Auteurs : Daniel Barlet 1,2,3

EPIGA, Volume 1 (2017), Nr. 5

[en]
We show that for n ≥ 2 the space of closed n-cycles in a strongly (n − 2)-concave complex space has a natural structure of reduced complex space locally of finite dimension and represents the functor " analytic family of n-cycles " parametrized by Banach analytic sets.

[fr]
Nous montrons que, pour n ≥ 2, l'espace des n-cycles fermés dans un espace complexe fortement (n − 2)-concave a une structure naturelle d'espace complexe réduit localement de dimension finie et que cet espace représente le foncteur " famille analytique de n-cycles " paramétrée par des ensembles analytiques banachiques.


Volume : Volume 1
Publié le : 1 septembre 2017
Accepté le : 12 juillet 2017
Soumis le : 12 juillet 2017
Mots-clés : 32G13 ; 32G10 ; 32F10 ; 32D15, [MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [en] Closed n-cycles, strongly q-concave space, Hartogs figure, f-analytic family of cycles

Statistiques de consultation

Cette page a été consultée 630 fois.
Le PDF de cet article a été téléchargé 589 fois.