Vladimir Lazić ; Thomas Peternell - Abundance for varieties with many differential forms

epiga:3867 - Épijournal de Géométrie Algébrique, 13 février 2018, Volume 2 - https://doi.org/10.46298/epiga.2018.volume2.3867
Abundance for varieties with many differential formsArticle

Auteurs : Vladimir Lazić ORCID; Thomas Peternell

    We prove that the abundance conjecture holds on a variety $X$ with mild singularities if $X$ has many reflexive differential forms with coefficients in pluricanonical bundles, assuming the Minimal Model Program in lower dimensions. This implies, for instance, that under this condition, hermitian semipositive canonical divisors are almost always semiample, and that klt pairs whose underlying variety is uniruled have good models in many circumstances. When the numerical dimension of $K_X$ is $1$, our results hold unconditionally in every dimension. We also treat a related problem on the semiampleness of nef line bundles on Calabi-Yau varieties.


    Volume : Volume 2
    Publié le : 13 février 2018
    Accepté le : 13 février 2018
    Soumis le : 21 août 2017
    Mots-clés : Mathematics - Algebraic Geometry,14E30, 14F10

    4 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 1039 fois.
    Le PDF de cet article a été téléchargé 690 fois.