Yang Cao - Troisième groupe de cohomologie non ramifiée des torseurs universels sur les surfaces rationnelles

epiga:3302 - Épijournal de Géométrie Algébrique, November 22, 2018, Volume 2 - https://doi.org/10.46298/epiga.2018.volume2.3302
Troisième groupe de cohomologie non ramifiée des torseurs universels sur les surfaces rationnellesArticle

Authors: Yang Cao

    Let $k$ a field of characteristic zero. Let $X$ be a smooth, projective, geometrically rational $k$-surface. Let $\mathcal{T}$ be a universal torsor over $X$ with a $k$-point et $\mathcal{T}^c$ a smooth compactification of $\mathcal{T}$. There is an open question: is $\mathcal{T}^c$ $k$-birationally equivalent to a projective space? We know that the unramified cohomology groups of degree 1 and 2 of $\mathcal{T}$ and $\mathcal{T}^c$ are reduced to their constant part. For the analogue of the third cohomology groups, we give a sufficient condition using the Galois structure of the geometrical Picard group of $X$. This enables us to show that $H^{3}_{nr}(\mathcal{T}^{c},\mathbb{Q}/\mathbb{Z}(2))/H^3(k,\mathbb{Q}/\mathbb{Z}(2))$ vanishes if $X$ is a generalised Châtelet surface and that this group is reduced to its $2$-primary part if $X$ is a del Pezzo surface of degree at least 2.


    Volume: Volume 2
    Published on: November 22, 2018
    Accepted on: November 22, 2018
    Submitted on: May 3, 2017
    Keywords: Mathematics - Algebraic Geometry

    Consultation statistics

    This page has been seen 398 times.
    This article's PDF has been downloaded 310 times.