In this article, we study isomorphisms between complements of irreducible curves in the projective plane $\mathbb{P}^2$, over an arbitrary algebraically closed field. Of particular interest are rational unicuspidal curves. We prove that if there exists a line that intersects a unicuspidal curve $C \subset \mathbb{P}^2$ only in its singular point, then any other curve whose complement is isomorphic to $\mathbb{P}^2 \setminus C$ must be projectively equivalent to $C$. This generalizes a result of H. Yoshihara who proved this result over the complex numbers. Moreover, we study properties of multiplicity sequences of irreducible curves that imply that any isomorphism between the complements of these curves extends to an automorphism of $\mathbb{P}^2$. Using these results, we show that two irreducible curves of degree $\leq 7$ have isomorphic complements if and only if they are projectively equivalent. Finally, we describe new examples of irreducible projectively non-equivalent curves of degree $8$ that have isomorphic complements.

Source : oai:arXiv.org:1902.06324

Volume: Volume 3

Published on: November 13, 2019

Submitted on: June 3, 2019

Keywords: Mathematics - Algebraic Geometry,14E07, 14H45, 14H50, 14J26

This page has been seen 89 times.

This article's PDF has been downloaded 37 times.