Remy van Dobben de Bruyn - The equivalence of several conjectures on independence of $\ell$

epiga:5570 - Épijournal de Géométrie Algébrique, 30 novembre 2020, Volume 4 - https://doi.org/10.46298/epiga.2020.volume4.5570
The equivalence of several conjectures on independence of $\ell$Article

Auteurs : Remy van Dobben de Bruyn ORCID

    We consider several conjectures on the independence of $\ell$ of the étale cohomology of (singular, open) varieties over $\bar{\mathbf F}_p$. The main result is that independence of $\ell$ of the Betti numbers $h^i_{\text{c}}(X,\mathbf Q_\ell)$ for arbitrary varieties is equivalent to independence of $\ell$ of homological equivalence $\sim_{\text{hom},\ell}$ for cycles on smooth projective varieties. We give several other equivalent statements. As a surprising consequence, we prove that independence of $\ell$ of Betti numbers for smooth quasi-projective varieties implies the same result for arbitrary separated finite type $k$-schemes.


    Volume : Volume 4
    Publié le : 30 novembre 2020
    Accepté le : 30 novembre 2020
    Soumis le : 12 juin 2019
    Mots-clés : Mathematics - Algebraic Geometry,14F20 (Primary) 14F30, 14C15, 14G15 (Secondary)

    1 Document citant cet article

    Statistiques de consultation

    Cette page a été consultée 718 fois.
    Le PDF de cet article a été téléchargé 335 fois.