Aleksandr V. Pukhlikov - Rationally connected rational double covers of primitive Fano varieties

epiga:5890 - Épijournal de Géométrie Algébrique, 30 novembre 2020, Volume 4 - https://doi.org/10.46298/epiga.2020.volume4.5890
Rationally connected rational double covers of primitive Fano varietiesArticle

Auteurs : Aleksandr V. Pukhlikov

    We show that for a Zariski general hypersurface $V$ of degree $M+1$ in ${\mathbb P}^{M+1}$ for $M\geqslant 5$ there are no Galois rational covers $X\dashrightarrow V$ of degree $d\geqslant 2$ with an abelian Galois group, where $X$ is a rationally connected variety. In particular, there are no rational maps $X\dashrightarrow V$ of degree 2 with $X$ rationally connected. This fact is true for many other families of primitive Fano varieties as well and motivates a conjecture on absolute rigidity of primitive Fano varieties.


    Volume : Volume 4
    Publié le : 30 novembre 2020
    Accepté le : 30 novembre 2020
    Soumis le : 3 novembre 2019
    Mots-clés : Mathematics - Algebraic Geometry,14E05, 14E07

    4 Documents citant cet article

    Statistiques de consultation

    Cette page a été consultée 495 fois.
    Le PDF de cet article a été téléchargé 341 fois.