Kirti Joshi ; Christian Pauly - Opers of higher types, Quot-schemes and Frobenius instability loci

epiga:5721 - Épijournal de Géométrie Algébrique, 8 décembre 2020, Volume 4 - https://doi.org/10.46298/epiga.2020.volume4.5721
Opers of higher types, Quot-schemes and Frobenius instability lociArticle

Auteurs : Kirti Joshi ; Christian Pauly

    In this paper we continue our study of the Frobenius instability locus in the coarse moduli space of semi-stable vector bundles of rank $r$ and degree $0$ over a smooth projective curve defined over an algebraically closed field of characteristic $p>0$. In a previous paper we identified the "maximal" Frobenius instability strata with opers (more precisely as opers of type $1$ in the terminology of the present paper) and related them to certain Quot-schemes of Frobenius direct images of line bundles. The main aim of this paper is to describe for any integer $q \geq 1$ a conjectural generalization of this correspondence between opers of type $q$ (which we introduce here) and Quot-schemes of Frobenius direct images of vector bundles of rank $q$. We also give a conjectural formula for the dimension of the Frobenius instability locus.


    Volume : Volume 4
    Publié le : 8 décembre 2020
    Accepté le : 13 septembre 2020
    Soumis le : 28 août 2019
    Mots-clés : Mathematics - Algebraic Geometry

    Statistiques de consultation

    Cette page a été consultée 474 fois.
    Le PDF de cet article a été téléchargé 335 fois.