Cédric Bonnafé ; Alessandra Sarti - Complex reflection groups and K3 surfaces I

epiga:6573 - Épijournal de Géométrie Algébrique, 25 février 2021, Volume 5 - https://doi.org/10.46298/epiga.2021.volume5.6573
Complex reflection groups and K3 surfaces IArticle

Auteurs : Cédric Bonnafé ; Alessandra Sarti

    We construct here many families of K3 surfaces that one can obtain as quotients of algebraic surfaces by some subgroups of the rank four complex reflection groups. We find in total 15 families with at worst $ADE$--singularities. In particular we classify all the K3 surfaces that can be obtained as quotients by the derived subgroup of the previous complex reflection groups. We prove our results by using the geometry of the weighted projective spaces where these surfaces are embedded and the theory of Springer and Lehrer-Springer on properties of complex reflection groups. This construction generalizes a previous construction by W. Barth and the second author.


    Volume : Volume 5
    Publié le : 25 février 2021
    Accepté le : 25 février 2021
    Soumis le : 17 juin 2020
    Mots-clés : Mathematics - Algebraic Geometry
    Financement :
      Source : OpenAIRE Graph
    • CATEGORIFICATIONS IN TOPOLOGY AND REPRESENTATION THEORY; Financeur: French National Research Agency (ANR); Code: ANR-18-CE40-0024
    • Geometric methods in modular representation theory of finite reductive groups; Financeur: French National Research Agency (ANR); Code: ANR-16-CE40-0010

    Statistiques de consultation

    Cette page a été consultée 745 fois.
    Le PDF de cet article a été téléchargé 623 fois.