Rodolfo Aguilar - The fundamental group of quotients of products of some topological spaces by a finite group - A generalization of a Theorem of Bauer-Catanese-Grunewald-Pignatelli

epiga:6427 - Épijournal de Géométrie Algébrique, November 16, 2021, Volume 5 - https://doi.org/10.46298/epiga.2021.6427
The fundamental group of quotients of products of some topological spaces by a finite group - A generalization of a Theorem of Bauer-Catanese-Grunewald-PignatelliArticle

Authors: Rodolfo Aguilar ORCID1

[en]
We provide a description of the fundamental group of the quotient of a product of topological spaces X i, each admitting a universal cover, by a finite group G, provided that there is only a finite number of path-connected components in X g i for every g ∈ G. This generalizes previous work of Bauer-Catanese-Grunewald-Pignatelli and Dedieu-Perroni.

[fr]
Nous fournissons une description du groupe fondamental du quotient d’un produitd’espaces topologiques Xi , chacun admettant un revêtement universel, par un groupe fini G,pourvu qu’il n’existe qu’un nombre ni de composantes connexes par arcs dans Xgi pour chaque g ∈ G. Cela généralise des résultats antérieurs de Bauer–Catanese–Grunewald–Pignatelli et deDedieu–Perroni.


Volume: Volume 5
Published on: November 16, 2021
Accepted on: September 1, 2021
Submitted on: April 23, 2020
Keywords: [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR], [en] fundamental group, quotients by finite group, orbifolds
Funding:
    Source : HAL
  • Algebraic and Kähler geometry; Funder: European Commission; Code: 670846; Call ID: ERC-2014-ADG; Projet Financing: ERC-2014-ADG
  • Groupes fondamentaux, Théorie de Hodge et Motifs; Funder: French National Research Agency (ANR); Code: ANR-16-CE40-0011

Consultation statistics

This page has been seen 547 times.
This article's PDF has been downloaded 869 times.