Jim Bryan ; Ádám Gyenge - $G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products

epiga:6986 - Épijournal de Géométrie Algébrique, 9 mars 2022, Volume 6 - https://doi.org/10.46298/epiga.2022.6986
$G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta productsArticle

Auteurs : Jim Bryan ; Ádám Gyenge

    Let $X$ be a complex $K3$ surface with an effective action of a group $G$ which preserves the holomorphic symplectic form. Let $$ Z_{X,G}(q) = \sum_{n=0}^{\infty} e\left(\operatorname{Hilb}^{n}(X)^{G} \right)\, q^{n-1} $$ be the generating function for the Euler characteristics of the Hilbert schemes of $G$-invariant length $n$ subschemes. We show that its reciprocal, $Z_{X,G}(q)^{-1}$ is the Fourier expansion of a modular cusp form of weight $\frac{1}{2} e(X/G)$ for the congruence subgroup $\Gamma_{0}(|G|)$. We give an explicit formula for $Z_{X,G}$ in terms of the Dedekind eta function for all 82 possible $(X,G)$. The key intermediate result we prove is of independent interest: it establishes an eta product identity for a certain shifted theta function of the root lattice of a simply laced root system. We extend our results to various refinements of the Euler characteristic, namely the Elliptic genus, the Chi-$y$ genus, and the motivic class.


    Volume : Volume 6
    Publié le : 9 mars 2022
    Accepté le : 9 mars 2022
    Soumis le : 16 décembre 2020
    Mots-clés : Mathematics - Algebraic Geometry,14J28, 14C05, 11F03, 11F20, 11F27
    Financement :
      Source : OpenAIRE Graph
    • Deep Drug Discovery and Deployment; Code: PTDC/CCI-BIO/29266/2017

    Publications

    A une évaluation
    • 1 zbMATH Open

    Statistiques de consultation

    Cette page a été consultée 1195 fois.
    Le PDF de cet article a été téléchargé 1385 fois.